

Robrecht Cannoodt

SOFTWARE ENGINEER · DATA SCIENTIST

☐ +32 494 66 60 73 | ☑ robrecht@cannoodt.dev | ★ cannoodt.dev
☐ 0000-0003-3641-729X | ☐ rcannood | У rcannood

Hello! This is me. _

- I'm a software engineer specialised in data science.
- I proudly advocate open research and good software development practices.
- I prefer honesty and multi-perspective thinking over pride and success.

Education

VIB – Ghent University

Ghent, Belgium

PHD IN COMPUTER SCIENCE Sep 2013 - Dec 2019

- Dissertation: "Modelling single-cell dynamics with trajectories and gene regulatory networks". [Download]
- Science Communication skills: Academic Writing, Presenting, and Data Visualisation
- Bioinformatics skills: Single-Cell Omics, Gene Regulatory Network Inference, Trajectory Inference,
- Data Science skills: Data Analysis, Data Wrangling, Benchmarking, (Co-)authored 24 R Software Packages
- · Soft skills: Mentored 6 Master Thesis Students, Teaching Assistant 6 times, Intense collaborations with PhD students

Ghent University Ghent, Belgium

MASTER OF SCIENCE IN COMPUTER SCIENCE ENGINEERING: SOFTWARE ENGINEERING

Sep 2011 - Jun 2013

- Master Thesis: "Network inference by integrating biclustering and feature selection"
- Programming courses: Programming Languages, Functional Programming
- Engineering courses: Software Architecture, Advanced Computer Architecture, Distributed Software, High Performance Computing
- Other courses: Philosophy and Science, Robotics, Computational Biology

Ghent University Ghent, Belgium

BACHELOR OF SCIENCE IN INFORMATICS

Sep 2008 - Jun 2011

- · Engineering courses: Software Development, Programming, Scripting, Operating Systems, Computer Architecture, Network Management
- Computer Science courses: Machine Learning, Algorithms and Data Structures, Formal Logic
- Math courses: Statistics, Linear Algebra, Geometry, Discrete Math, Calculus

International School of Berne

Berne, Switzerlana

INTERNATIONAL BACCALAUREATE

Sep 2003 - Jul 2007

- Taught in English
- · Main courses: Math, Physics, Philosophy, Visual Arts

Skills

Research Domains Data Science, Machine Learning, Software Engineering, Bioinformatics

Communication Effective Data Visualisation, Academic Writing, Presentations (Technical and Non-technical)

Programming R, Scala, Java, C++, bash, awk, sed, MySQL, RMarkdown, MEX

Software Development Git, Docker, Singularity, Travis CI, UML, Agile/Scrum

Languages Dutch (Native), English (Fluent), French (If-need-be), Hindi (None at all)

DECEMBER 2019

Software.

Below is a selection of software projects. Visit cannoodt.dev/software for a full list of software I've (co-)authored.

- 1. Watanabe K and **Cannoodt R**. proxyC: Computes Proximity in Large Sparse Matrices. Role: Contributor. https://CRAN.R-project.org/package=proxyC
- 2. Hastie T, Weingessel A, Hornik K, Bengtsson H and **Cannoodt R**. princurve: Fits a Principal Curve in Arbitrary Dimension. Role: Maintainer. https://CRAN.R-project.org/package=princurve
- 3. **Cannoodt R** and Saelens W. GillespieSSA2: Gillespie's Stochastic Simulation Algorithm for Impatient People. Role: Lead Developer. https://CRAN.R-project.org/package=GillespieSSA2
- 4. **Cannoodt R** and Saelens W. dyno: Inferring, interpreting and visualising trajectories using a streamlined set of packages. Role: Lead Developer. https://github.com/dynverse/dyno
- 5. Cannoodt R and Saelens W. lmds: Landmark Multi-Dimensional Scaling. Role: Lead Deverloper. https://CRAN.R-project.org/package=lmds
- 6. **Cannoodt R** and Saelens W. SCORPIUS: Inferring Developmental Chronologies from Single-Cell RNA Sequencing Data. Role: Lead Developer. https://CRAN.R-project.org/package=SCORPIUS
- 7. Cannoodt R and Saelens W. babelwhale: Talking to Docker and Singularity Containers. Role: Lead Developer. https://CRAN.R-project.org/package=babelwhale

Publications_

Below is a selection of publications. Visit cannoodt.dev/publication or my ORCID profile for a full list of publications.

- 1. Saelens W*, **Cannoodt R***, Todorov H, Saeys Y. A comparison of single-cell trajectory inference methods. Nature Biotechnology. 2019 Apr 1;37(5):547–54. doi:10.1038/s41587-019-0071-9
- 2. Todorov H, **Cannoodt R**, Saelens W, Saeys Y. Network Inference from Single-Cell Transcriptomic Data. Gene Regulatory Networks. 2018 Dec 14;235–49. doi:10.1007/978-1-4939-8882-2_10
- 3. Weber LM, Saelens W, **Cannoodt R**, Soneson C, Hapfelmeier A, Gardner PP, et al. Essential guidelines for computational method benchmarking. Genome Biology. 2019 Jun 20;20(1). doi:10.1186/s13059-019-1738-8
- 4. Saelens W, **Cannoodt R**, Saeys Y. A comprehensive evaluation of module detection methods for gene expression data. Nature Communications. 2018 Mar 15;9(1). doi:10.1038/s41467-018-03424-4
- 5. **Cannoodt R**, Saelens W, Sichien D, Tavernier S, Janssens S, Guilliams M, et al. SCORPIUS improves trajectory inference and identifies novel modules in dendritic cell development. bioRxiv; 2016 Oct 6; doi:10.1101/079509
- 6. Cannoodt R*, Saelens W*, Saeys Y. Computational methods for trajectory inference from single-cell transcriptomics. European Journal of Immunology. 2016 Oct 19;46(11):2496–506. doi:10.1002/eji.201646347

*: Equal contribution

Teaching.

TEACHING ASSISTANT

2014	Bioinformatics: lessons in R	Biomedical sciences
2015	Bioinformatics: lessons in R	Biomedical sciences
2016	Bioinformatics: lessons in R	Biomedical sciences
2017	Bioinformatics: lessons in R	Biomedical sciences
2018	Bioinformatics: lessons in R	Biomedical sciences
2019	Bioinformatics: lessons in R	Biomedical sciences

MASTER THESIS GUIDANCE

2012 2014 | | | | | | | |

2013-2014 Identificatie van nieuwe kankergenen voor neuroblastoomonderzoek met machine learning	Leen De Baets
2013-2014 Locale cel-type specifieke genexpressie in het myeloïde transcriptoom	Wouter Saelens
2015-2016 Quantitative evaluation of network inference methods for single-cell cancer regulomes	Charlotte De Vogelaere
Comparative review of dimensionality reduction methods for high-throughput single-cell transcriptomics	Sofie Veys
2016-2017 Het afleiden van dynamische grafen op basis van snapshot data	Chloë Guidi
2018-2019 Inferentie van cellontwikkelingstrajecten met machine learning	Jarre Knockaert

Conferences and workshops _____

ACCEPTED TALKS

2013	Network inference by integrating biclustering and feature selection, BeNeLux Bioinformatics	Brussels, Belgium		
	Conference	Drusseis, Deigiuiri		
2015	Differential module analysis in neuroblastoma regulatory networks, Oncopoint	Ghent, Belgium		
2015	Inferring developmental chronologies from single cell RNA, BeNeLux Bioinformatics Conference	Antwerp, Belgium		
2016	SCORPIUS: Inferring trajectories along dynamic processes from single-cell RNA-seq data, Single	Ghent, Belgium		
	Cell Biology Workshop	onent, Beigiani		
2016	Improving marker gene discovery from high-dimensional single-cell snapshot data, CYTO	Seattle, USA		
2016	Unbiased modelling of dynamic processes with single-cell RNA-sequencing, BENELEARN	Kortrijk, Belgium		
2017	Unbiased modelling of dynamic processes identifies novel modules in dendritic cell	Veldhoven, Netherlands		
	development, VIB Seminar			
2019	Automated building and unit testing, Docker and Singularity, VIB Developers Meeting	Ghent, Belgium		
2019	Assessing Accuracy, Robustness and Usability of Single-Cell Trajectory Inference methods,	Colorado, USA		
	Keystone Symposia: Single Cell Biology			
ACCEPTED DOCTEDS				

ACCEPTED POSTERS

CEPII	POSTERS	CCEPTED POSTERS				
2014	Network Inference by Integrating Biclustering and Feature Selection, N2N Annual Symposium	Ghent, Belgium				
2014	Differential Module Analysis in Neuroblastoma Regulatory Networks, BeNeLux Bioinformatics Conference	Luxembourg, Belgium				
2015	Differential Module Analysis in Neuroblastoma Regulatory Networks, BIG N2N symposium	Ghent, Belgium				
2016	Unbiased modelling of dynamic processes with single-cell RNA-sequencing, Single Cell Biology	Hinxton, United Kingdom				
2016	Unbiased modelling of dynamic processes with single-cell RNA-sequencing, BIG N2N symposium	Ghent, Belgium				
2016	Improving marker gene discovery from high-dimensional single-cell snapshot data, CYTO	Seattle, USA				
2016	Unbiased modelling of dynamic processes with single-cell RNA-sequencing, BENELEARN	Kortrijk, Belgium				
2016	Unbiased modelling of dynamic processes with single-cell RNA-sequencing, Single Cell Genomics	Hinxton, United Kingdom				
2017	Unbiased modelling of dynamic processes with SCORPIUS identifies novel modules in dendritic cell development, VIB Seminar	Veldhoven, Netherlands				
2017	True single cell network inference: Modelling gene regulation of individual cells, Keystone Symposia: Single Cell Omics	Stockholm, Sweden				
2017	Generalised framework for and comparison of 24 trajectory inference methods, BeNeLux Bioinformatics Conference	Louvain, Belgium				
2018	A comparison of single-cell trajectory inference methods: towards more accurate and robust tools, Single Cell Biology	Hinxton, United Kingdom				
2019	Assessing Accuracy, Robustness and Usability of Single-Cell Trajectory Inference methods, Keystone Symposia: Single Cell Biology	Colorado, USA				