
DaMBi10
10
00
110

110

0
110
10
10

DaMBi

December 2019

Modelling single-cell dynamics

with trajectories and gene regulatory networks

Robrecht Cannoodt

Supervisor:
Prof. Dr. Yvan Saeys
Co-supervisor:
Prof. Dr. Katleen De Preter

Thesis submitted in fulfilment of the requirements

for the degree of Doctor in Computer Science

Modelling single-cell dynamics
with trajectories and gene regulatory

networks

Robrecht Cannoodt

Thesis submitted in fulfilment of the requirements for the degree of
Doctor in Computer Science, 2019

Supervisors:
Prof. Dr. Yvan Saeys

Prof. Dr. Katleen De Preter

DaMBi10
10
00
110

110

0
110
10
10

DaMBi

Vakgroep Toegepaste Wiskunde, Informatica, en Statistiek
Faculteit Wetenschappen, Universiteit Gent

Krijgslaan 281 - S2, 9000 Gent

For Remi,

You never fail to put a smile on my face.

Page iii

Contents

1 Introduction 1

1.1 The cell . 2

1.1.1 The origin of life and the RNA world 2

1.1.2 Central dogma . 3

1.1.3 Cell types . 4

1.1.4 Cell dynamics and gene regulation 5

1.1.5 Profiling single cells . 6

1.2 Computational tools . 10

1.2.1 Dimensionality reduction . 10

1.2.2 Clustering . 12

1.2.3 Trajectory inference . 13

1.2.4 Differential expression . 15

1.2.5 Network inference . 15

1.3 Benchmarking computational tools . 17

1.3.1 Problem definition . 17

1.3.2 Datasets . 18

1.3.3 Metrics . 19

1.4 Research context and objectives . 19

1.5 Hippocratic oath for method developers 21

1.6 References . 22

2 dyngen: Benchmarking with in silico single cells 27

2.1 Introduction . 28

2.2 Results . 29

2.2.1 RNA velocity . 31

2.2.2 Casewise network inference . 32

2.3 Discussion . 34

2.4 Methods . 35

2.4.1 Defining the backbone: modules and states 35

2.4.2 Generating the gene regulatory network 40

Page v

2.4.3 Convert gene regulatory network to a set of reactions 41

2.4.4 Compute average expression along backbone transitions 46

2.4.5 Simulate single cells . 46

2.4.6 Simulate experiment . 47

2.4.7 Determining the casewise ground-truth regulatory network . . . 48

2.4.8 Comparison of casewise network inference methods 48

2.4.9 Comparison of RNA velocity methods 50

2.4.10 Code availability . 50

2.5 References . 51

3 dynbenchmark: A comparison of single-cell trajectory inference methods 55

3.1 Introduction . 56

3.2 Results . 57

3.2.1 Trajectory inference methods . 57

3.2.2 Accuracy . 62

3.2.3 Scalability . 63

3.2.4 Stability . 64

3.2.5 Usability . 65

3.3 Discussion . 65

3.4 Methods . 69

3.4.1 Trajectory inference methods . 69

3.4.2 Method wrappers . 69

3.4.3 Trajectory types . 73

3.4.4 Real datasets . 74

3.4.5 Synthetic datasets . 75

3.4.6 Dataset filtering and normalization 78

3.4.7 Benchmark metrics . 78

3.4.8 Method execution . 80

3.4.9 Complementarity . 80

3.4.10 Scalability . 81

3.4.11 Stability . 82

3.4.12 Usability . 82

3.4.13 Guidelines . 83

3.4.14 Reporting Summary . 83

3.5 Supplementary Figures and Tables . 84

3.6 Supplementary Note 1: Metrics to compare two trajectories 84

3.6.1 Metric characterisation and testing 85

3.6.2 Metric conformity . 91

3.6.3 Score aggregation . 93

3.7 References . 113

Page vi

4 SCORPIUS: Fast, accurate, and robust single-cell pseudotime 119

4.1 Introduction . 120

4.2 Results . 120

4.2.1 SCORPIUS outperforms existing TI tools in inferring linear trajec-

tories . 121

4.2.2 Functional modules in dendritic cell development 123

4.3 Discussion . 124

4.4 Methods . 125

4.4.1 Sparse Spearman Rank Correlation 126

4.4.2 Landmark Multi-Dimensional Scaling 126

4.4.3 Approximated Principal Curves . 127

4.4.4 Gene Importances . 127

4.4.5 Datasets and benchmark results . 127

4.4.6 Measurement of protein synthesis 128

4.4.7 Code availability . 128

4.5 References . 129

5 dyno: A toolkit for inferring and interpreting trajectories 131

5.1 Introduction . 132

5.2 Results . 132

5.2.1 Preparing the dataset . 132

5.2.2 Selecting the best methods for a dataset 133

5.2.3 Inferring trajectories . 134

5.2.4 Execution details . 134

5.2.5 Visualising trajectories . 136

5.2.6 Manipulating the trajectory . 139

5.2.7 Differentially expressed genes along the trajectory 140

5.3 Discussion . 141

5.4 References . 143

6 bred: Inferring single cell regulatory networks 145

6.1 Introduction . 146

6.2 Results . 147

6.3 Discussion . 148

6.4 Methods . 149

6.4.1 Inferring case-wise regulomes . 149

6.4.2 Predicting the effect of an interaction 151

6.4.3 Clustering of case-wise GRNs . 153

6.4.4 Visualising clustered GRNs . 153

6.5 Supplementary information . 154

Page vii

6.5.1 Melanocytic neoplasm . 162

6.5.2 Kidney carcinoma . 163

6.6 References . 164

7 incgraph: Optimising regulatory networks 167

7.1 Introduction . 168

7.2 Materials and methods . 170

7.2.1 Incremental graphlet counting . 170

7.2.2 Timing experiments . 171

7.2.3 Gene regulatory network optimisation experiments 172

7.3 Results and discussion . 173

7.3.1 Execution time is reduced by orders of magnitude 173

7.3.2 IncGraph allows for better regulatory network optimisation . . . 175

7.4 Conclusion . 175

7.5 Supplemental information . 177

7.6 References . 181

8 Essential guidelines for computational method benchmarking 185

8.1 Introduction . 186

8.2 Ten essential guidelines . 187

8.2.1 Defining the purpose and scope . 187

8.2.2 Selection of methods . 188

8.2.3 Selection (or design) of datasets . 189

8.2.4 Parameters and software versions 191

8.2.5 Evaluation criteria: key quantitative performance metrics 192

8.2.6 Evaluation criteria: secondary measures 194

8.2.7 Interpretation, guidelines, and recommendations 195

8.2.8 Publication and reporting of results 196

8.2.9 Enabling future extensions . 197

8.2.10 Reproducible research best practices 197

8.3 Discussion . 199

8.4 References . 201

9 Discussion 211

9.1 Impact of this work . 212

9.2 Outlook . 212

9.2.1 Trajectory differential expression 212

9.2.2 Trajectory alignment . 213

9.2.3 Variations on network inference . 214

9.3 A life without Git, Travis CI, or tidyverse . 215

9.4 References . 217

Page viii

A Curriculum Vitae 221

A.1 Personalia . 221

A.2 Professional Experience . 221

A.3 Education . 221

A.4 First-author publications . 222

A.5 Co-author publications . 222

A.6 Conferences and meetings . 224

A.7 Courses / workshops . 225

A.8 Oral presentations . 225

A.9 Poster presentations . 226

A.10 Master student supervision . 227

A.11 Open-source software . 228

A.12 Sources of funding . 228

Page ix

Nomenclature

kNN k-nearest-neighbour

CART Classification And Regression Trees

DE Differential Expression

DNA Deoxyribonucleic Acid

DR Dimensionality Reduction

GRN Gene Regulatory Network

HCA Human Cell Atlas

LDMS Landmark Multi-Dimensional Scaling

MDS Multi-Dimensional Scaling

mRNA Messenger RNA

NI Network Inference

PCA Principal Component Analysis

RF Random Forests

RNA Ribonucleic Acid

t-SNE t-distributed Stochastic Neighbor Embedding

TCGA The Cancer Genome Atlas

TDE Trajectory Differential Expression

TF Transcription Factor

TI Trajectory Inference

UMAP Uniform Manifold Approximation and Projection

Page xi

Summary

Recent developments in the single-cell omics technologies triggered a major milestone in the

field of (cell)biology. Current techniques can be used to profile both the genome and the

transcriptome of individual cells, leading to important insights into cellular heterogeneity and

dynamic cell processes. This evolution has led, among other things, to the Human Cell Atlas

initiative, an international collaboration project with the aim of mapping all human cell types in

terms of its biomolecular contents.

During this doctoral project I have been able to follow these inspiring advancements first hand,

but I also made scientific contributions myself, by extensively evaluating new computational

tools and by developing various tools and algorithms.

A common problemof pioneering computational tools is the lack of sufficient available datasets

to enable the assessment of performances in a quantitative manner. During this PhD, I devel-

oped a flexible and extendible in silico simulator for individual cells, with the aim of supporting

current and future computational research fields and to help kick-start emerging computational

sub-domains (Chapter 2).

I conducted an extensive study of 45 trajectory inferencemethods (Chapter 3). Trajectory infer-

ence is a new type of computational analysis with the aim of identifying and studying transitions

between main cellular states. While this class of methods is one of the fastest growing subdo-

mains within the single-cell omics, a quantitative study of the advantages and disadvantages

was hitherto lacking.

In addition, I developed four new software tools. These methods include an extensive toolkit

for inferring, visualising and interpreting trajectories (Chapter 5), a robust tool for inferring linear

trajectories (Chapter 4), a novel algorithm for studying gene regulation at a single-cell or single-

sample level (Chapter 6), and a tool for quantifying the topological changes resulting from

minor perturbations in a network (Chapter 7).

Finally, I reflect on current challenges within the field, by providing guidelines on how to per-

form large-scale benchmarking experiments of computational methods (Chapter 8).

Throughout this project I particularly enjoyed working in an open-source ecosystem, collabo-

rating with scientists around the world to tackle unsolved problems, whilst learning best prac-

tices by inspecting the source code of exemplary software projects.

Page xii

Samenvatting

Recente ontwikkelingen in de single-cell omics technologieën vormen een belangrijke mijlpaal

in het domein van de (cel)biologie. Met de huidige technieken kunnen zowel het genoom als

het transcriptoom van individuele cellen geprofileerd worden wat leidt tot belangrijke inzichten

in de cellulaire heterogeniteit en de dynamische celprocessen. Deze evolutie heeft onder meer

geleid tot het Human Cell Atlas initiatief, een internationaal samenwerkingsproject met als doel

het in kaart brengen van alle humane cell types.

Gedurende dit doctoraatsproject heb ik niet alleen deze inspirerende ontwikkelingen van nabij

kunnen volgen, maar evenzeer zelf wetenschappelijke bijdragen kunnen aanleveren door het

uitgebreid evalueren van nieuwe computationele tools en door het ontwikkelen van verschei-

den tools en algoritmen.

Een veelvoorkomend probleem bij de ontwikkeling van innovatieve computationele algoritmen

is het gebrek aan voldoende beschikbare datasets om de performantie op een kwantitatieve

wijze te kunnen beoordelen. Tijdens dit doctoraat ontwikkelde ik een flexibele en uitbreidbare

in silico simulator voor individuele cellen, met als doel huidige en toekomstige computationele

onderzoeksvelden te ondersteunen en kick-starter projecten een duwtje in de rug te geven

(Chapter 2).

Eveneens voerdenwe een uitgebreide studie van 45 trajectvoorspellendemethoden uit (Hoofd-

stuk 3). Trajectvoorspellende methoden is een nieuwe soort van computationele analyse met

als doel transities tussen verscheidene cellulaire toestanden te identificeren en te bestuderen.

Terwijl deze klasse van methoden een van de snelst groeiende subdomeinen binnen de single-

cell omics vormt, was er tot op dat moment nog geen kwantitatieve studie van de voor- en

nadelen van dergelijke methoden uitgevoerd.

Ik ontwikkelde ook zelf vier nieuwe softwareprogramma’s, waaronder een uitgebreide toolkit

om trajecten te voorspellen, te visualiseren en te interpreteren (Hoofdstuk 5), een robuust pro-

grammaom lineaire trajecten te voorspellen (Hoofdstuk 4), een nieuwemanier omgenregulatie

op het niveau van individuele cellen of stalen te bestuderen (Hoofdstuk 6), en een programma

om topologische veranderingen ten gevolge van kleine veranderingen in een netwerk te kwan-

tificeren (Hoofdstuk 7).

Ik reflecteer op huidige uitdagingen binnen het veld, door richtlijnen aan te bieden aan on-

twikkelaars over hoe grootschalige benchmarkingsexperimenten van computationele metho-

den kunnen worden uitgevoerd (Hoofdstuk 8).

Gedurende dit project heb ik vooral genoten van het werken in een open-source omgeving,

en het samenwerken met nationale en internationale collega’s uit het veld om onopgeloste

problemen aan te pakken. Door de broncode van excellente softwareprojecten te bestuderen,

leerde ik mezelf de aanbevolen werkwijzen aan.

Page xiii

Page xiv

1
1 | Introduction

Page 1

Introduction

1
1.1 The cell

The cell is the smallest unit of life, of which all known living organisms are composed.

Every cell houses a plethora of biomolecular processes that allows it to continuously

adapt to changes in its environment. Due to the dynamic nature of these processes, it

can be very challenging to comprehend the cellular response to a signal. A reduction-

ist approach to understanding a complex biological system is to study the biochemical

components of which it is comprised [1].

Recent advances in experimental technologies are playing a crucial role in re-

ductionist biology, allowing to measure the abundance of thousands of different

biochemical molecules in tens of thousands of individual cells. With it comes the

challenge of analysing large amounts of data that are not easily interpretable by

hand. The sheer volume of the data generated from such highly-integrative and

high-throughput experiments are not the only reason why they are so challenging to

interpret. For instance, the generated data contains high levels of noise arising from

inherent biomolecular stochasticity in the cells and from the experimental profiling

techniques used, as well as batch effects arising from differences between donors

and labs [2]. Biologists thus turn to computer scientists to develop new tools to

tackle these problems and help them to extract meaningful biological insights from

the data. In this work, incremental contributions were made to the field in order to

be able to address the aforementioned problems in a more comprehensive context.

Observing the biomolecular insides of cells can ultimately provide fundamental un-

derstanding into the processes that govern these cells and help uncover novel ap-

proaches for disease diagnosis, prognosis, and treatment. For example, the Human

Cell Atlas (HCA) consortium [3] has set out to develop a comprehensive reference

map of all the different types of cells in the human body. Experts in the field often

metaphorically describe the HCA initiative as aiming to develop a ’Google Maps’ of

the human body. Even in its infancy, the HCA has profiled 3.8 million cells from 248

donors across 42 labs [4], and this number is likely to increase well above one hundred

million.

The next part of the chapter highlights several key concepts in both cell biology and

computer science, upon which the remainder of this work relies.

1.1.1 The origin of life and the RNA world

The discovery of the double helix shape of deoxyribonucleic acid (DNA) [5] is often

considered the pivot point in our understanding of the origin of life and evolution. By

now, it is well known that DNA serves as a medium for storing the genetic information

Page 2

1

Introduction

required to reproduce a whole organism. With other words, the DNA of an organism

contains the complete set of instructions required to build all of the biomolecular

machinery present in its body.

Life (or cells) did not originate from DNA, however. A widely-accepted hypothesis

states that life originates from its lesser-known cousin, ribonucleic acid (RNA). Ac-

cording to the RNA world hypothesis [6], the very first primitive cells used RNA both

to store genetic information and to perform the chemical reactions required to sus-

tain themselves (Figure 1.1). Only later did cells develop the ability to use the more

chemically stable DNA molecules to self-sustain in a process commonly referred to

as the central dogma.

4.5 Ga 4.0 Ga 3.5 Ga 3.0 Ga 2.5 Ga 2.0 Ga 1.5 Ga 1.0 Ga 0.5 Ga Today

Formation

of earth

Simple

cellular life

Complex

cellular life

Multicellular

life

Homo

sapiens

4.0 Ga 3.8 Ga 3.0 Ga3.6 Ga 3.4 Ga 3.2 Ga

Stable

hydrosphere

Origin

of life

RNA

world

DNA-RNA-protein

world

Figure 1.1: RNA world. The postulated rise and fall of the RNA world during the evolution of
life, from early self-replicating RNA to complex, RNA-controlled metabolism, to the invention
of translation, followed by diversification of all modern branches of life. Adapted from Horning
(2011) [7].

1.1.2 Central dogma

The central dogma describes the general flow of genetic information in almost all

existing living cells: DNA is decoded to RNA, which in turn encodes proteins [8]. Main

processes involved in the central dogma are transcription, splicing, and translation

(Figure 1.2).

During the process of transcription that takes place in the cell nucleus, a comple-

mentary RNA copy is transcribed from the template DNA. The initial RNA transcript

is a precursor messenger RNA (pre-mRNA) that needs to undergo series of matura-

tion steps to ultimately form the mature messenger RNA (mRNA). This maturation

includes pre-mRNA splicing to remove non-protein coding intervening sequences

Page 3

Introduction

1

M H S V I DProtein

RNA

DNA

Transcription

Translation

Figure 1.2: The central dogma of molecular biology explains the flow of genetic information,
from DNA to RNA, to protein.

(the introns) and to join the neighbouring protein-coding sequences (the exons). A

single pre-mRNA can be alternatively spliced to generate multiple forms of mRNAs

that will result in the production of multiple protein isoforms. This process of alter-

native splicing is essential to generate more than 100’000 different proteins starting

from just 20’000 genes [9].

The mature mRNA is then transported to the cytoplasm, where it engages with ri-

bosomes to initiate translation. During this highly evolutionary conserved process, a

chain of amino acids, known as the protein building blocks, is being synthesised. Each

amino acid is specified by three nucleotides (a codon) in the mRNA, according to a

nearly universal genetic code. After being released by the ribosomes, the translation

product undergoes a variety of chemical modifications to form the final folded pro-

tein, the structure of which is determined by the sequence of different amino acids

in the chain. In addition, polypeptides may be cleaved to yield more than one active

polypeptide product. The structure of a protein determines its functionality, which

includes catalysing biochemical reactions, providing structure, and transportation of

molecules.

1.1.3 Cell types

Ever since Robert Hook first described the different structures of cells in 1665, biolo-

gists have been classifying cells into different ”cell types”, by grouping them according

to form and function. The human body is said to contain more than 210 different cell

types that are classified into four groups: epithelial, connective, muscle, and nervous.

Page 4

1

Introduction

This however, is a major underestimation of the real number of cell types. Neurons,

for instance, that are known to be extremely diverse, are estimated to reach numbers

above 10,000 different types [8].

The concept of cell types eases reasoning and our understanding about many aspects

of biology (e.g. the process of cell differentiation, cell-cell communication, cellular

response to certain stimuli). Some cells are known to be highly specialised toward

performing a particular function (e.g. memory B cells accelerate immune response

by remembering previously encountered pathogens), or they can maintain a strong

ability to differentiate into other cell types.

One common approach for understanding the functionality of a particular cell is to ob-

serve which molecules are present in the cell and to associate those set of molecules

with functionality. Taking a snapshot of the protein or RNA transcript content in a par-

ticular cell, might already provide us with major insights into its functionality. How-

ever, in order to fulfil a particular task, the biochemical machinery of the cell gradually

changes over time. Therefore it is highly informative to also consider the transition

states between cell types and the dynamic processes involved therein.

1.1.4 Cell dynamics and gene regulation

Cells are dynamic entities that can gradually produce the molecules needed to ac-

quire new functionality. The naturally occurring cell-to-cell variability happens at the

level of gene expression. Gene expression itself can be controlled at different levels

(Figure 1.3), one of which is gene regulation by transcription.

DNA RNA
transcript

mRNA mRNA

inactive
mRNA

protein inactive
protein

Nucleus Cytosol

transcriptional
control

RNA processing
control

RNA
transport

and
localisation

control

translation
control

mRNA
degradation

control

protein
activity
control

Figure 1.3: Levels of controlling gene expression can happen at the level of transcription, RNA
processing (i.e. splicing), RNA transport and localization, mRNA translation, mRNA degradation
and protein activity [10].

Page 5

Introduction

1

According to the needs of a cell, different genes are being transcribed. Housekeeping

genes are being expressed in essentially every cell, while other genes are cell type or

tissue specific or may be expressed in response to developmental and environmental

signals [8].

Transcription factors (TFs) modulate the rate of gene transcription by binding and re-

cruiting the transcriptional machinery to cis-regulatory regions (enhancers, and si-

lencers) that are typically located in the promotor region of target genes. These

bindings may result in increased or decreased gene expression. There are several

TF families of which members share structural characteristics (e.g. zinc finger, helix-

loop-helix).

Many TFs are commonly present in virtually all cell types (e.g. NF-κB), while others are

specific for cells and developmental stages [11]. Typically, the same TF can regulate

the rate of transcription of many target genes in different cell types, indicating that

these gene regulatory networks (GRNs) are dynamic. Moreover, the production of a

specificmoleculemight require several gene regulatory cascades. Studying the active

parts of a cell’s GRN can thus reveal which dynamic processes are taking place within

a cell.

1.1.5 Profiling single cells

Several technologies are now available to profile (i.e. observe) biomolecular compo-

nents, allowing us to gain better understanding in the biological processes that take

place within a cell. The single-cell ”omics” technologies originated from the conver-

gence of two different fields, ”single-cell” and ”omics”.

Single-cell

The earliest approach for measuring the abundance of a particular molecule in single

cells is the microscope. Since its development by Coons et al. (1941), immunohisto-

chemistry (IHC) has been instrumental in visualising proteins [12]. A cell can present a

particular type of protein, also called an antigen, on its cell surface. Inmanymulticellu-

lar organisms, antigens can stimulate the immune system to produce antibodies. IHC

realises the visualisation of proteins by exploiting the principle of antibodies binding

to specific antigens.

IHC (and many other biotechnologies) visualises antigen-antibody reactions by at-

taching particular molecules to the antibody, such as an enzyme that catalyses a

colour-producing reaction, or a fluorescent chemical compound that can re-emit

Page 6

1

Introduction

light upon excitation. The use of several colours (wavelengths) allows measuring ex-

pression levels of different antibodies simultaneously. Characterising cells in a semi-

quantifiable way is labour intensive, however; since it involves acquiring an image of

many cells and drawing a contour around each cell (called cell segmentation). Mod-

ern implementations of IHC improve the throughput drastically by using robots and

computer software to provide semi-automated image acquisition and cell segmenta-

tion [13].

Flow cytometry [14] circumvents imaging and segmentation issues by measuring flu-

orescently labelled proteins as cells pass through a fluidic system. Since cells need

to be suspended in a buffer, flow cytometry is particularly useful for analysing non-

adherent cells such as the many different immune cells in blood. However, many

protocols already exist to extract viable single cells from tissues and tumours [15].

Conventional flow cytometry devices enable to measure protein expression levels of

millions of cells using up to eight different antibody fluorochromes simultaneously,

while state-of-the-art instrumentation allows detection of up to 27 biomarkers simul-

taneously [16].

Besides IHC and flow cytometry, many new technologies have been developedwhich

allow quantifying expression levels of molecules in single cells (e.g. mass cytometry,

single-cell quantitative polymerase chain reaction, fluorescence in situ hybridization).

All of these single-cell (non-omics) technologies are limited by the number of differ-

ent molecules they measure, however. Selecting molecules of interest prior to analy-

sis, makes the experiment biased towards the preconceptions of the experimenter.

Omics

On the other side of the spectrum are the so-called ”omics” technologies. ”Omics”1 is

a collective term for profiling all molecules of a particular type in a high-throughput

manner. There are at least ten types of ”omics”. In this work, we mostly consider

genomics, transcriptomics, proteomics, and regulomics. Genomics studies the com-

plete DNA sequence of an organism’s genome, while transcriptomics and proteomics

study the RNA transcripts and proteins, respectively. Regulomics studies the regula-

tory molecules (e.g. genes, RNAs, proteins) which play a role in determining gene

regulation.

Specific examples of omics technologies arewhole genome sequencing to determine

the DNA sequence of an organism, and RNA sequencing to profile the sequence of

RNA transcripts, both using next-generation sequencing technologies. A gene ex-

pression profile can be obtained by mapping the sequences of RNA transcripts to the

1The etymology of ”omics” is quite interesting [17].

Page 7

Introduction

1

genome.

Several high-throughput technologies have been developed to investigate proteomes

in depth. The most commonly applied are mass spectrometry-based and gel-based

techniques (e.g. differential in-gel electrophoresis).

Typically for these methods, to capture enough material to generate a profile, numer-

ous cells need to be pooled and lysed together, thereby granting the technology’s

name ”bulk” omics. Bulk omics is a major workhorse in molecular genetics and has

applications in cancer research and in diagnostic screening of inheritable disorders.

Increasing evidence shows that cells are biomoleculary heterogeneous, even in very

similar cell types [18] (Figure 1.4A). Since a bulk profile is a population average (or

rather, a summation), important cell-to-cell variability is not discernible (Figure 1.4B).

B

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5

A

Figure 1.4: The ’masking’ effect of bulk omics. A: Cells from several subpopulations are incor-
rectly assumed to be homogeneous and are profiled with a single bulk omics experiment. B: The
signals from the different subpopulations are masked. The resulting profile is dissimilar from the
majority of cells it is supposed to represent.

Single-cell omics

Comparing single-cell technologies with omics technologies shows that they have

both clear advantages but also significant drawbacks (Figure 1.5A). Single-cell biology

allows profiling thousands or even millions of cells, but only for a select number of

genes. On the other hand, omics biology provides a broader view – since genes do

not need to be selected beforehand – but is a profile of ensemble of cells and thus

masks important cellular heterogeneity.

Advances in microvolume sequencing allowed profiling the transcriptome at single-

cell resolution, thereby bringing single-cell biology and omics together to create

single-cell omics. During the decade that followed, the number of single-cell omics

technologies has sky-rocketed, allowing to profile >100’000 cells [19] and measuring

other levels of information (e.g. protein abundance and spatial location) [20].

Page 8

1

Introduction

Snapshot

Synchronised
time-series

Sorted

time: 0h 2h 4h gate: A B C

B C

Omics biology
Thousands of genes,
ensemble average

Single-cell biology

Several genes,
thousands of cells

Single-cell omics
Thousands of genes,
thousands of cells

Immunohistochemistry

Fluorescence reporters

Flow cytometry

FISH
High-throughput PCR

Microarray
Next-generation sequencing

RNA sequencing

Whole-genome amplification

scRNA-seq

A

Microfluidics

Droplet-based

Figure 1.5: A: Technological improvements in microfluidics and low-volume sequencing were instru-
mental in the convergence of the fields of single-cell biology and omics biology. B: Different
approaches for sampling cells with decreasing levels of cellular heterogeneity within the different
sub-populations: snapshot, time-series, sorted. C: Two common single-cell RNA sequencing
technologies. Microfluidics systems let cells travel through nanometer scale tubing, capturing
individual cells at intersections. Droplet-based systems encapsulate individual cells in droplets.

In this work, unless noted otherwise, we will be working with transcriptomics data

resulting from a single-cell RNA-sequencing experiment (scRNA-seq). The workflow

of generating scRNA-seq profiles is as follows. Same as other single-cell (non-omics)

profiling methods, cells first need to be isolated (Figure 1.5B). Different sampling tech-

niques yield different levels of information about cellular state. By now, many proto-

cols for extracting and tagging RNA from single cells have been developed [19], the

most popular of which are based on microfluidics or droplets (Figure 1.5C). By se-

quencing the transcripts and the attached unique cell identifier tags, each read can

bemapped and tallied up. scRNA-seq data can thus be summarised in amatrix, where

each column represents a single cell, each row a gene, and each value represents the

number of transcripts that were sequenced for that gene and cell.

The rapidly advancing field of single-cell omics harbours exceptional opportunities

to discover new aspects of biology and redefine existing knowledge. Some of these

Page 9

Introduction

1

opportunities lie in efforts like the HCA consortium [3]. They have set out to redefine

all human cell types in both terms of their gene expression and location, and as well

as the developmental trajectories connecting the different cell types. As part of this

endeavour, the consortium will likely profile the whole transcriptomes of tens or even

hundreds of millions of cells [4].

1.2 Computational tools

Whole-genome profiling at single-cell level allows new types of analyses with which

to study cellular heterogeneity at a hitherto unseen throughput. The new types of

analyses permitted by single-cell omics present several computational challenges [21,

22, 23]. This necessitates the development of novel computational tools, either be-

cause the problem statement of the performed analysis is completely novel, or to

adapt existing methodology to new data characteristics – dimensionality and noise.

scRNA-seq data is typically very sparse – while the human genome has more than

20’000 genes, they only contain non-zero values of a few thousand genes (typically

less than 4’000). This is partially due to cells being specialised in particular functions

and thus they do not need proteins of every time, but also due to RNA transcription

occurring in bursts rather than continuously [24]. This contributes to the high levels

of noise seen in scRNA-seq data: no two cells have the same set of non-zero genes.

Over the past five years, already 450 new tools have been developed to perform

various analyses of single-cell omics data [25]. Most of these tools belong to one

(or more) of the five main classes of computational methods used within single-cell

omics (Figure 1.6). The main concepts and applications of these types of analyses are

discussed in the following sections.

1.2.1 Dimensionality reduction

Single-cell omics datasets are usually one or more high-dimensional matrices, con-

taining between M = 103 to 105 cells and typically about N = 103 to 104 genes (Fig-

ure 1.7A). The dimensionality of such datasets is typically too high for humans to

interpret manually and for most modelling algorithms to tackle directly. Moreover, in

reality, the intrinsic dimensionality of biological systems is much lower. For example,

a differentiating hematopoietic cell could be described by just three dimensions: the

first two dimensions lays out the hematopoietic lineage tree, and a third dimension

allows for reprogramming between branches to occur.

Dimensionality reduction (DR)methods transformhigh-dimensional data into amean-

Page 10

1

Introduction

Type of analysis

Applications

Single-cell
omics

Differential
expression

Dimensionality
reduction

Trajectory
inference

Network
inference

Cell population
delineation

Rare cell type
identification

Visualisation
& interpretation

Denoising

Identify cellular
states and

branch points

Derive lineage
tree wiring

Find
state-specific

markers

Discover
regulatory

mechanisms

Clustering

Population
signatures

Predict
driver genes

Figure 1.6: Five main types of analyses typically performed with single-cell omics, and the
applications thereof.

ingful low-dimensional representation. DRmethods are typically one of the firstmeth-

ods to apply on the data as a visual quality control by asserting that cells group to-

gether in ways that are expected.

DR methods have two main target audiences; computers – to construct a K-

dimensional (with K ≪ N) representation of the data such that pairwise distances

between different samples are retained as well as possible (Figure 1.7B); and humans –

to obtain a visual overview of the data (Figure 1.7C). DR methods are also commonly

used to denoise the data, which is particularly useful since single-cell omics data is

inherently noisy.

Each dimension frequently corresponds to one or more modules of co-expressed

genes. The reduced space can be interpreted in way analogous to Waddington’s

epigenetic landscapes [26, 27, 28], where the landscape dictates the possible states

a cell can reside in, and transitions between states correspond to dynamic cellular

processes, such as cell differentiation.

DRmethods can be classified into twomain categories, feature projection-based and

manifold learning [30].

Projection-based DR methods aim to perform a transformation of the data while pre-

serving the pairwise distances between samples as much as possible. Examples of

Page 11

Introduction

1
M cells

N genes

Expression

Min

Max

K dimensions

Dimensionality
reduction

A B C

Figure 1.7: Dimensionality reduction for single-cell omics data. A: A heatmap visualisation of an
scRNA-seq expression dataset of fibroblasts being reprogrammed to neuron cells [29]. Only the
most variable B: The reduced space is a M×K-dimensional matrix which attempts to conserve
the cellular heterogeneity of the original space as well as possible. C: A dot plot of the first two
components of the reduced space provides a global overview of the cells in the dataset. Colouring
the dots according to prior information (e.g. cell type) or gene expression provides insight into
the cellular heterogeneity within the dataset.

commonly used projection-basedDRmethods in single-cell omics are Principal Com-

ponent Analysis [31] (PCA) and Multi-Dimensional Scaling [32] (MDS).

Manifold learning DR methods reconstruct a higher-order structure in the original

space (e.g. a graph or a grid), visualising the structure in a lower-dimensional space,

and mapping the original samples to the lower-dimensional space. Manifold learning

can be an iterative optimisation process using a predefined criterion. Examples of

manifold learning techniques are t-distributed Stochastic Neighbor Embedding [33]

(t-SNE), Diffusion Maps [34, 35] and Uniform Manifold Approximation and Projection

[36] (UMAP).

For scalability reasons, this work mostly makes use of Landmark MDS [37, 38] (LMDS)

with a Spearman rank correlation distance metric. LMDS is an extension of classical

MDS, but rather than calculating a complete distance matrix between all pairs of cells,

a set of landmark cells is sampled, only the distances between a set of landmarks and

the samples are calculated.

1.2.2 Clustering

Clustering methods divide up the cells into separate groups of highly similar cells

in order to delineate cell populations (Figure 1.8A). By visualising gene expression

of known genes involved in the cell types of interest, the clusters can be annotated

(Figure 1.8B). Particular clustering methods might be developed to better deal with

imbalanced data in order to better identify rare cell type populations.

Usually, the number of clusters is determined by the user, either as a direct parameter

Page 12

1

Introduction

Cluster

A

B

Label clusters

MEF

Figure 1.8: Clustering for single-cell omics data. A: Clustering methods group cells with similar
omics profiles together. B: By overlaying gene expression levels on a dimensionality reduction,
the clusters can be annotated to allow better interpretation of the cellular heterogeneity.

(e.g. k-means [39]) or an indirect parameter (e.g. a height cutoff in hierarchical clus-

tering). In some exceptional cases, the number of clusters is strictly determined by

the data itself and cannot be altered with a parameter (e.g. Louvain clustering [40]).

Clustering methods used in this work are mostly restricted to k-Means for clustering

low-dimensional spaces and Louvain for clustering networks, since both are highly

scalable with respect to the number of cells.

1.2.3 Trajectory inference

While clustering methods divide cells into distinct groups, trajectory inference (TI)

methods acknowledge that cells are dynamic entities which transition from once cel-

lular state to another via various dynamic processes. Rather than making distinct

groups, TI methods attempt to predict how cells develop or undergo dynamic pro-

cesses. The main applications of trajectory inference are to identify cellular states

and branchpoints, reconstruct the topology of dynamic processes, and identify state-

specific markers.

TI methods try to reconstruct the topology of a dynamic process as a trajectory and

subsequently map the cells onto that trajectory. A trajectory is a graph where the

nodes represent noteworthy cellular states, and each cell is predicted to be progress-

ing along transitions between the different states (Figure 1.9A).

A trajectory can be visualised as a graph to better highlight the topology of the trajec-

tory(Figure 1.9Amiddle), as a heatmap to better depict the changes in gene expression

Page 13

Introduction

1

along the different transitions (Figure 1.9A right), or may be embedded in a dimen-

sionality reduction of the cells to better demonstrate cellular heterogeneity along the

trajectory (Figure 1.9B right). Similar to clustering, by colouring the cells according to

the expression of genes known to be involved in the dynamic process of interest, the

milestones in the trajectory can be annotated (Figure 1.9B).

Trajectory
inference

A

Label
milestones

B

Cellular states

Cells positioned along

transitions between cell states

Figure 1.9: Trajectory inference for single-cell omics data. A: During a dynamic process cells
pass through several transitional states, characterized by different waves of transcriptional, mor-
phological, epigenomic and/or surface marker changes [41]. TI methods provide an unbiased
approach to identifying and correctly ordering different transitional stages. B: By overlaying
gene expression levels on a dimensionality reduction, the milestones can be annotated to allow
better interpretation of the cellular heterogeneity.

Groups of TI methods use similar algorithms to infer a trajectory. By breaking down

each method into its set of core algorithms, we can create a map of TI methodology

[42] (Figure 1.10A), which is divided into two major classes. In the first step, dimen-

sionality reduction techniques such as manifold learning, clustering, or graph-based

methods are used to convert the dataset to a more simplified representation. This

representation of the data then allows the trajectory itself to be more easily modelled

in a second step. In this second step, the trajectory is modelled within the data us-

ing graph-based or curve-based approaches, after which the cells themselves can be

ordered using a variety of methods.

A common way to classify TI methods is by the types of trajectories they can infer

[43] (Figure 1.10B). About half of TI methods specialise in inferring linear or cyclic

trajectories (i.e. they order the cells). Others model the trajectory as a rooted tree,

allowing for one or more bifurcations to occur. Only a few methods are able to infer

more generalised trajectories containing disconnected subgraphs or cycles.

Page 14

1

Introduction

A

B

C

D

E

F

A

B

C D

E F

A

B

C

F

D E

A

B

C

E F

D

A

B

C

D

E A

B

D

E
C

A

B
C

D

E
F

linear bifurcation multifurcating tree cycle connected disconnected

A

B

Figure 1.10: TI methods use several common building blocks and can be organized in a unifying
modular framework. A: Most TI methods consist of two major steps, dimensionality reduction
and trajectory modelling. TI methods require some form of dimensionality reduction in order to
summarise cell heterogeneity in a lower dimensional space. Subsequently, a trajectory modelling
step then operates in this reduced space, aiming to identify cell states, constructing a trajectory
through the different states, and projecting the cells back on to the trajectory. B: TI methods
can be classified according to the trajectory topologies they can infer.

1.2.4 Differential expression

Given that cells are split up two or more groups – either through clustering or prior

knowledge– differential expression (DE)methods attempt to identify a group of genes

that are expressed significantly higher or lower in one group in comparison to the oth-

ers. Main applications of DE methods are the development of population signatures

or simply the visualisation of themain difference between several groups in a compact

manner (Figure 1.11A).

Trajectory differential expression (TDE) is an extension of DE where instead genes are

prioritised according to whether their gene expression changes smoothly but signifi-

cantly along a parts of a trajectory (Figure 1.11).

1.2.5 Network inference

One of the central cellular processes underlying development is transcriptional reg-

ulation. Modelling gene regulation is essential to better understand what drives cells

to develop in the way that they do and to identify what goes wrong in the case of

disease.

Network inference (NI) methods predict for every gene (or a subset thereof) by which

Page 15

Introduction

1 Differential
expression

A

Trajectory DE

B

1

2

4

3

Figure 1.11: Differential expression for single-cell omics data. A: Differential expression methods
prioritises genes that are expressed significantly higher or lower in particular given groups. B:
Trajectory differential expression prioritises genes that change smoothly but significantly along
particular transitions in a trajectory.

transcription factors they are regulated (Figure 1.12). The output of a network infer-

ence is a graph in which nodes represent genes and edges denote a regulatory inter-

action between a regulator and a target gene. Interactions can have two properties:

its regulatory strength (a positive real value) and its effect (promoting or repressing).

Before single-cell omics, thesemethods rely onmultiple experiments, amongst which

perturbation and time-series experiments, to predict the effect each transcription fac-

tor has on the up- or downregulation of a gene. One of the main advantages of

single-cell omics is the heterogeneity between cells caused by naturally occurring

biological randomness [44] can be exploited to infer regulatory interactions between

TFs and their target genes at much lower costs.

Network
inference

Figure 1.12: Network inference for single-cell omics data.

Page 16

1

Introduction

1.3 Benchmarking computational tools

Recent technological advancements in profiling single cells are having significant

repercussions in many fields of biology. Profiling thousands of individual cells in

a genome-wide manner provides opportunities to study cell heterogeneity and

dynamics, for example inferring mechanisms for cellular development or intercellular

communication. Hundreds of new software tools were developed [25] to perform

these new types of analyses, or to fit existing analytical tools to deal with new data

characteristics (e.g. differential expression, dimensionality reduction, normalisation).

One major shortcoming during the advent of single-cell omics was that the majority

of newly developed computational tools were not quantitatively and comparatively

evaluated. Rather, they relied on anecdotal evidence to demonstrate its usefulness.

As a demonstration, we perform a brief review of 75 articles introducing new TI meth-

ods, but the findings presented are generalisable to single-cell omics in general. Out

of 75 articles, only about 37% of articles contain a self-assessment (Figure 1.13). Peer-

reviewed articles fared even worse, self-assessing in only 35% of cases, whereas arti-

cles first published as a pre-print self-assess in 44% of cases.

While self-assessments are universally biased in favour of the authors [45] (intention-

ally or not), it is dangerous and unusual to publish a computational tool without

quantitatively demonstrating its performance compared to state-of-the-art methods.

Uncontrolled development of software tools without comprehensive benchmarking

poses serious problems. For one, it slows down scientific progress. Every end-user

needs to make a large commitment researching the domain in order to make an in-

formed decision of which tool to use, or risk a higher incidence of false positive discov-

eries (either way, valuable resources are being wasted). In addition, it also negatively

impacts the credibility of the field, thus discouraging potential users or researchers

from entering.

This issue is likely not due to the tool developer’s malevolence, but instead due to the

absence of benchmarking methodology for this application, which can include stan-

dardised problem definitions, readily available benchmarking datasets, and suitable

metrics. Each of these topics is discussed in more detail below.

1.3.1 Problem definition

Onemain reason why benchmarking TI methods is difficult is due to there being slight

variations of the problem a method is attempting to solve. For example, a TI method

might infer linear or cyclic trajectories, or predict the probability of a cell ending up in

Page 17

Introduction

1

Figure 1.13: Less than half of all TI articles perform quantitative self-assessment. A: Since
2016, the number of TI articles has been increasing rapidly. Note that TI methods with both a
pre-print and a peer-reviewed article only count once in the overall tally. B: Less than 50% of
articles feature a self-assessment. Peer-reviewed articles self-assess only in 34% of cases.

one of several end states.

These differences reflect themselves in the input and output interfaces of each

method, making it harder to directly compare methods directly. By constructing a

generalised version that encompasses the different sub-problems and wrapping each

method accordingly allows to fix the interface to make methods directly comparable.

Additionally, differences in problem definitions might complicate knowledge discov-

ery to find similar methods, as certain articles might only show up with specific search

terms. For the discoverability of a new TI method, it is therefore essential to use in-

clude generalised terminology, or at least list it as one of the keywords.

1.3.2 Datasets

During the infancy of the relatively domain of single-cell omics, large well-annotated

datasets that can be used to benchmark novel computational tools are scarce and

expensive to generate. When adequate benchmarking datasets are lowly abundant,

synthetic data is often used to evaluate computational methods, either standalone or

to complement real data.

Benefits of synthetic data are that they offer more control over the data character-

istics and that they can be generated in large quantities. This allows evaluating the

performance of a method in function of a changing parameter (e.g. dataset size or

noise levels), which provides information on how well the method will work on real

datasets.

A common counterargument of synthetic data is that they generate unrealistic

datasets and thus provide no additional value in evaluating a method. In contrast, we

Page 18

1

Introduction

argue that a good set of synthetic datasets should allow benchmarkers to verify that

a method should at least work well on the synthetic datasets, but good performance

on synthetic datasets does not guarantee good performance on real datasets.

1.3.3 Metrics

To evaluate a computational tools, a quantitative metric is needed to compare the of-

ten complex multi-layered data structures of the ground-truth dataset to predictions

thereof, or to compare the data structures of multiple predictions. When adequate

metrics are lacking, it is advisable to re-purposemetrics fromother domains and adapt

them, if necessary.

A second important criterion is to evaluate the robustness of predictions by compar-

ing multiple executions of the same method. Computing the robustness does not

replace the necessity of a relevant metric that captures whether a predicted trajec-

tory resembles the ground truth.

1.4 Research context and objectives

Technological breakthroughs in single-cell omics profiling have resulted in a wealth

of information on the biomolecular contents of individual cells. In this work, we aim to

speed up scientific discovery by developing and benchmarking computational tools

for generating high-quality hypotheses in a high-throughput and data-drivenmanner.

The objectives of this work can be reduced to three main questions. How do cells

change over time? What drives cells to change? How good are these predictions?

We tackle these three questions using three respective approaches, namely trajectory

inference, network inference, and benchmarking (Figure 1.14). Each of the chapters

in this work contributes to answering a part of one or more of these questions.

Trajectory inference We develop a simulator of developing single cells (Chapter 2).

We use synthetic data to complement real data in benchmarking TI methods in terms

of accuracy, stability, scalability and usability (Chapter 3). Based on these results, we

provide guidelines to end-users on how to perform trajectory inference analysis. We

introduce a novel TI method specialised in inferring linear trajectories which outper-

forms state-of-the-art existing methods (Chapter 4). Finally, we provide a full-stack

toolkit for performing inferring, visualising and interpreting trajectories from more

than 50 different TI methods (Chapter 5).

Page 19

Introduction

1

Figure 1.14: Overview

Network inference We explore a novel algorithm for inferring gene regulatory in-

teractions at a single-cell level (Chapter 6). We demonstrate our NI methodology by

inferring regulatory interactions for 14’963 profiles of cancer patients. We provide a

tool for analysing the topological properties of large, evolving networks and use this

to iteratively optimise GRN predictions (Chapter 7).

Benchmarking Using our synthetic single-cell generator, we develop benchmark-

ing strategies for assessing the performance of novel types of single-cell omics tools

which are currently in a conceptual or prototypical state (Chapter 2). We summarise

our experience in benchmarking computational methods by providing a list of essen-

tial guidelines in how to benchmark computational tools (Chapter 8).

Page 20

1

Introduction

1.5 Hippocratic oath for method developers

Before setting out on this perilous journey (i.e. the rest of this dissertation), I wrote a

Hippocratic oath which I believe all developers of computational tools should swear

by before haphazardly developing and publishing new software tools.

• In developing a new computational tool, I swear to fulfil, to the best of
my ability, the following items:

• I will write software that works reliably but fails gracefully when it does
not.

• I will assert that my method produces accurate and reproducible results.
• I will validate the performance of my tool with previously unseen data
from third-party sources.

• I will use suitable quantitative performance metrics. If possible, I use mul-
tiple metrics to avoid overfitting.

• I will compare the performance to relevant methods.
• I will report positive achievements of my method, but also be critical of
it, and discuss areas in which it performs sub-optimally

• I will write unit tests to ensure that each component in my tool works as
intended. If the tool produces unexpected errors when tested on various
edge cases, my tool will be perceived as dysfunctional by others.

• I will follow reproducible research best practices, by making code and
data publicly available.

Figure 1.15: A Hippocratic oath for computational method developers. Inspired by Laplante[46]
and lists of guidelines for benchmarking[45, 47]

Page 21

Introduction

1
1.6 References

[1] Ingo Brigandt and Alan Love. “Reductionism in Biology”. In: The Stanford En-

cyclopedia of Philosophy. Ed. by Edward N Zalta. Spring 201. Metaphysics Re-

search Lab, Stanford University, 2017.

[2] Chung Chau Hon et al. “The Human Cell Atlas: Technical Approaches and

Challenges”. In: Briefings in Functional Genomics 17.4 (July 2018), pp. 283–

294. ISSN: 20412657. DOI: 10.1093/bfgp/elx029.

[3] Aviv Regev et al. “The Human Cell Atlas White Paper”. In: (Oct. 2018). URL:

http://arxiv.org/abs/1810.05192.

[4] Human Cell Atlas consortium. Human Cell Atlas Data Portal. 2018. URL: https:

//data.humancellatlas.org (visited on 08/11/2019).

[5] James D Watson, Francis HC Crick, et al. “Molecular Structure of Nucleic

Acids”. In: Nature 171.4356 (1953), pp. 737–738.

[6] Bruce Alberts et al. “The RNA World and the Origins of Life”. In: Molecular

Biology of the Cell. 4th edition (2002). URL: https://www.ncbi.nlm.nih.gov/

books/NBK26876/ (visited on 08/12/2019).

[7] David P. Horning. “RNAWorld”. In: Encyclopedia of Astrobiology. Ed. by Muriel

Gargaud et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 1466–

1478. ISBN: 978-3-642-11274-4. DOI: 10.1007/978-3-642-11274-4_1740.

[8] T. Strachan, A. Read, and T. Strachan. “Human Molecular Genetics. 4th”. In:

New York: Garland Science (2011).

[9] Timothy W. Nilsen and Brenton R. Graveley. “Expansion of the Eukaryotic Pro-

teome by Alternative Splicing”. In:Nature 463.7280 (Jan. 1, 2010), pp. 457–463.

ISSN: 1476-4687. DOI: 10.1038/nature08909.

[10] Bruce Alberts et al. “An Overview of Gene Control”. In: Molecular Biology of

the Cell. 4th Edition. Garland Science, 2002.

[11] Samuel A. Lambert et al. “The Human Transcription Factors”. In: Cell 172.4

(Feb. 8, 2018), pp. 650–665. ISSN: 0092-8674. DOI: 10.1016/j.cell .2018.01.

029.

[12] Albert H Coons, Hugh J Creech, and R Norman Jones. “Immunological Prop-

erties of an Antibody Containing a Fluorescent Group.”. In: Proceedings of the

Society for Experimental Biology and Medicine 47.2 (1941), pp. 200–202.

[13] Zenonas Theodosiou et al. “Automated Analysis of FISH and Immunohis-

tochemistry Images: A Review”. In: Cytometry Part A 71A.7 (July 1, 2007),

pp. 439–450. ISSN: 1552-4922. DOI: 10.1002/cyto.a.20409.

[14] M. J. Fulwyler. “Electronic Separation of Biological Cells by Volume”. In: Sci-

ence 150.3698 (1965), pp. 910–911. ISSN: 0036-8075. DOI: 10.1126/science.

150.3698.910.

Page 22

https://doi.org/10.1093/bfgp/elx029
http://arxiv.org/abs/1810.05192
https://data.humancellatlas.org
https://data.humancellatlas.org
https://www.ncbi.nlm.nih.gov/books/NBK26876/
https://www.ncbi.nlm.nih.gov/books/NBK26876/
https://doi.org/10.1007/978-3-642-11274-4_1740
https://doi.org/10.1038/nature08909
https://doi.org/10.1016/j.cell.2018.01.029
https://doi.org/10.1016/j.cell.2018.01.029
https://doi.org/10.1002/cyto.a.20409
https://doi.org/10.1126/science.150.3698.910
https://doi.org/10.1126/science.150.3698.910

1

Introduction

[15] Nalin Leelatian et al. “Preparing Viable Single Cells from Human Tissue and

Tumors for Cytomic Analysis”. In: Current Protocols in Molecular Biology 118.1

(Apr. 1, 2017), pp. 25C.1.1–25C.1.23. ISSN: 1934-3639. DOI: 10.1002/cpmb.37.

[16] Andrea Cossarizza et al. “Guidelines for the Use of Flow Cytometry and Cell

Sorting in Immunological Studies”. In: European Journal of Immunology 47.10

(Oct. 1, 2017), pp. 1584–1797. ISSN: 0014-2980. DOI: 10.1002/eji.201646632.

[17] Satya P. Yadav. “TheWholeness in Suffix -Omics, -Omes, and theWordOm”. In:

Journal of Biomolecular Techniques : JBT 18.5 (Dec. 2007), p. 277. ISSN: 1524-

0215. pmid: 18166670. URL: https://www.ncbi .nlm.nih.gov/pmc/articles/

PMC2392988/ (visited on 08/15/2019).

[18] Byungjin Hwang, Ji Hyun Lee, and Duhee Bang. “Single-Cell RNA Sequenc-

ing Technologies and Bioinformatics Pipelines”. In: Experimental & Molecular

Medicine 50.8 (Aug. 7, 2018), p. 96. ISSN: 2092-6413. DOI: 10.1038/s12276-

018-0071-8.

[19] Valentine Svensson, Roser Vento-Tormo, and Sarah A Teichmann. “Exponen-

tial Scaling of Single-Cell RNA-Seq in the Past Decade”. In: Nature Protocols

13.4 (Apr. 2018), pp. 599–604. ISSN: 1750-2799. DOI: 10.1038/nprot.2017.149.

[20] Arnav Moudgil. Multimodal scRNA-Seq. Feb. 25, 2019. DOI: 10.5281/zenodo.

2628012.

[21] Oliver Stegle, Sarah A. Teichmann, and John C. Marioni. “Computational and

Analytical Challenges in Single-Cell Transcriptomics”. In: Nature Reviews Ge-

netics 16.3 (Mar. 2015), pp. 133–145. ISSN: 1471-0064. DOI: 10.1038/nrg3833.

[22] Guo-Cheng Yuan et al. “Challenges and Emerging Directions in Single-Cell

Analysis”. In: Genome Biology 18.1 (May 8, 2017), p. 84. ISSN: 1474-760X. DOI:

10.1186/s13059-017-1218-y.

[23] Geng Chen, Baitang Ning, and Tieliu Shi. “Single-Cell RNA-Seq Technologies

and Related Computational Data Analysis”. In: Frontiers in Genetics 10 (2019).

ISSN: 1664-8021. DOI: 10.3389/fgene.2019.00317.

[24] Damien Nicolas, Nick E. Phillips, and Felix Naef. “What Shapes Eukaryotic Tran-

scriptional Bursting?”. In: Molecular BioSystems 13.7 (2017), pp. 1280–1290.

ISSN: 1742-206X. DOI: 10.1039/C7MB00154A.

[25] Luke Zappia, Belinda Phipson, and Alicia Oshlack. “Exploring the Single-Cell

RNA-Seq Analysis Landscape with the scRNA-Tools Database”. In: PLOS Com-

putational Biology 14.6 (June 2018), e1006245. ISSN: 1553-7358. DOI: 10.1371/

journal.pcbi.1006245.

[26] Conrad Hal Waddington et al. “The Strategy of the Genes. A Discussion of

Some Aspects of Theoretical Biology. With an Appendix by H. Kacser”. In: The

strategy of the genes. A discussion of some aspects of theoretical biology.With

an appendix by H. Kacser. (1957), pp. ix+–262.

Page 23

https://doi.org/10.1002/cpmb.37
https://doi.org/10.1002/eji.201646632
18166670
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2392988/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2392988/
https://doi.org/10.1038/s12276-018-0071-8
https://doi.org/10.1038/s12276-018-0071-8
https://doi.org/10.1038/nprot.2017.149
https://doi.org/10.5281/zenodo.2628012
https://doi.org/10.5281/zenodo.2628012
https://doi.org/10.1038/nrg3833
https://doi.org/10.1186/s13059-017-1218-y
https://doi.org/10.3389/fgene.2019.00317
https://doi.org/10.1039/C7MB00154A
https://doi.org/10.1371/journal.pcbi.1006245
https://doi.org/10.1371/journal.pcbi.1006245

Introduction

1

[27] James E Ferrell. “Bistability, Bifurcations, and Waddington’s Epigenetic

Landscape”. In: Current Biology 22.11 (June 2012), R458–R466. ISSN:

0960-9822. DOI: 10.1016/j.cub.2012.03.045.

[28] Jonathan A. Rebhahn et al. “An Animated Landscape Representation of CD4+

T-Cell Differentiation, Variability, and Plasticity: Insights into the Behavior of

Populations versus Cells”. In: European Journal of Immunology 44.8 (Aug. 1,

2014), pp. 2216–2229. ISSN: 0014-2980. DOI: 10.1002/eji.201444645.

[29] Barbara Treutlein et al. “Dissecting Direct Reprogramming from Fibroblast to

Neuron Using Single-Cell RNA-Seq”. In: Nature 534.7607 (2016), pp. 391–395.

[30] Daniel Engel, Lars Hüttenberger, and Bernd Hamann. “A Survey of Dimension

Reduction Methods for High-Dimensional Data Analysis and Visualization”. In:

Visualization of Large and Unstructured Data Sets: Applications in Geospatial

Planning, Modeling and Engineering - Proceedings of IRTG 1131 Workshop

2011. Ed. by Christoph Garth, Ariane Middel, and Hans Hagen. Vol. 27. Ope-

nAccess Series in Informatics (OASIcs). Dagstuhl, Germany: Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik, 2012, pp. 135–149. ISBN: 978-3-939897-46-

0. DOI: 10.4230/OASIcs.VLUDS.2011.135.

[31] Karl Pearson. “LIII. On Lines and Planes of Closest Fit to Systems of Points in

Space”. In: The London, Edinburgh, and Dublin Philosophical Magazine and

Journal of Science 2.11 (Nov. 1, 1901), pp. 559–572. ISSN: 1941-5982. DOI:

10.1080/14786440109462720.

[32] J. B. Kruskal. “Multidimensional Scaling by Optimizing Goodness of Fit to a

Nonmetric Hypothesis”. In: Psychometrika 29.1 (Mar. 1964), pp. 1–27. ISSN:

0033-3123, 1860-0980. DOI: 10.1007/BF02289565.

[33] Laurens van der Maaten and Geoffrey Hinton. “Visualizing Data Using T-SNE”.

In: The Journal of Machine Learning Research 9.2579-2605 (2008), p. 85.

[34] Boaz Nadler et al. “Diffusion Maps, Spectral Clustering and Eigenfunctions of

Fokker Planck Operations”. In: Proceedings of the 18th International Confer-

ence on Information Processing Systems. NIPS’05. Cambridge, MA, USA: MIT

Press, 2005, pp. 955–962.

[35] Ronald R. Coifman and Stéphane Lafon. “Diffusion Maps”. In: Applied and

Computational Harmonic Analysis 21.1 (July 2006), pp. 5–30. ISSN: 10635203.

DOI: 10.1016/j.acha.2006.04.006.

[36] Leland McInnes, John Healy, and James Melville. “UMAP: Uniform Manifold

Approximation and Projection for Dimension Reduction”. In: (2018).

[37] Vin D. Silva and Joshua B. Tenenbaum. “Global Versus Local Methods in Non-

linear Dimensionality Reduction”. In: Advances in Neural Information Process-

ing Systems 15. Ed. by S. Thrun and K. Obermayer. Cambridge, MA: MIT Press,

2002, pp. 705–712.

Page 24

https://doi.org/10.1016/j.cub.2012.03.045
https://doi.org/10.1002/eji.201444645
https://doi.org/10.4230/OASIcs.VLUDS.2011.135
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1007/BF02289565
https://doi.org/10.1016/j.acha.2006.04.006

1

Introduction

[38] Seunghak Lee and Seungjin Choi. “Landmark MDS Ensemble”. In: Pat-

tern Recognition 42.9 (Sept. 2009), pp. 2045–2053. ISSN: 00313203. DOI:

10.1016/j.patcog.2008.11.039.

[39] Stuart Lloyd. “Least Squares Quantization in PCM”. In: IEEE Transactions on

Information Theory 28.2 (Mar. 1982), pp. 129–137. DOI: 10 . 1109/TIT . 1982 .

1056489.

[40] Vincent D Blondel et al. “Fast Unfolding of Communities in Large Networks”.

In: Journal of Statistical Mechanics: Theory and Experiment 2008.10 (Oct. 9,

2008), P10008. ISSN: 1742-5468. DOI: 10.1088/1742-5468/2008/10/p10008.

[41] Tariq Enver et al. “Stem Cell States, Fates, and the Rules of Attraction”. In: Cell

Stem Cell 4.5 (May 8, 2009), pp. 387–397. ISSN: 1875-9777. DOI: 10.1016/j .

stem.2009.04.011. pmid: 19427289.

[42] Robrecht Cannoodt, Wouter Saelens, and Yvan Saeys. “Computational Meth-

ods for Trajectory Inference from Single-Cell Transcriptomics”. In: European

Journal of Immunology 46.11 (Nov. 1, 2016), pp. 2496–2506. ISSN: 1521-4141.

DOI: 10.1002/eji.201646347.

[43] Wouter Saelens et al. “A Comparison of Single-Cell Trajectory Inference

Methods”. In: Nature Biotechnology 37 (May 2019). ISSN: 15461696. DOI:

10.1038/s41587-019-0071-9.

[44] Olivia Padovan-Merhar and Arjun Raj. “Using Variability in Gene Expression as

a Tool for Studying Gene Regulation”. In: Wiley Interdisciplinary Reviews. Sys-

tems Biology and Medicine 5.6 (Nov. 2013), pp. 751–759. ISSN: 1939-005X.

DOI: 10.1002/wsbm.1243. pmid: 23996796.

[45] Raquel Norel, John Jeremy Rice, and Gustavo Stolovitzky. “The Self-

Assessment Trap: Can We All Be Better than Average?”. In: Molecular systems

biology 7.1 (2011), p. 537. ISSN: 1744-4292. DOI: 10.1038/msb.2011.70. pmid:

21988833.

[46] Phillip A Laplante. “First, Do No Harm: A Hippocratic Oath for Software

Developers”. In: Queue 2.4 (2004), p. 14.

[47] Lukas M. Weber et al. “Essential Guidelines for Computational Method

Benchmarking”. In: Genome Biology 20.1 (June 20, 2019), p. 125. ISSN:

1474-760X. DOI: 10.1186/s13059-019-1738-8.

Page 25

https://doi.org/10.1016/j.patcog.2008.11.039
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1016/j.stem.2009.04.011
https://doi.org/10.1016/j.stem.2009.04.011
19427289
https://doi.org/10.1002/eji.201646347
https://doi.org/10.1038/s41587-019-0071-9
https://doi.org/10.1002/wsbm.1243
23996796
https://doi.org/10.1038/msb.2011.70
21988833
https://doi.org/10.1186/s13059-019-1738-8

2 | dyngen: Benchmarking with in silico sin-

gle cells

Abstract

Purpose: A common problem of pioneering computational tools is that

during their development, there are rarely sufficient datasets available for

adequately quantitatively assessing its performance.

Results: We developed dyngen, a multi-modality simulator of single cells.

In dyngen, the biomolecular state of an in silico cell changes over time

according to a gene regulatory network. The simulator is extendible for

adding new modalities or experimental procedures. We demonstrate dyn-

gen’s flexibility by applying it to benchmark RNA velocity and casewise net-

work inference methods.

Conclusion: dyngen lays the foundations for benchmarking a wide variety

of computational single-cell tools and can be used to help kick-start the

development of future types of analyses.

Publication status

Manuscript in preparation.

Cannoodt R∗, Saelens W∗, Deconinck L, and Saeys Y.
∗ Equal contribution

Author contributions

• R.C. and W.S. designed the study.

• R.C., W.S., and L.D. performed the experiments and analysed the data.

• R.C. and W.S. implemented software packages.

• R.C. and W.S. wrote the original manuscript.

• R.C., W.S., L.D., and Y.S. reviewed and edited the manuscript.

• Y.S. supervised the project.

Page 27

dyngen: Benchmarking with in silico single cells.

2
2.1 Introduction

Continuous technological advancements to single-cells omics are having profound

effects on how researchers can validate biological hypotheses. Early experimental

technologies typically only allowed profiling a single modality (e.g. DNA sequence,

RNA or protein expression). However, recent developments permit profiling multiple

modalities simultaneously, and every modality added allows for new types of analyses

that can be performed.

This presents method developers with a problem. The majority of the 250+ peer-

reviewed computational tools for analysing single cell omics data were published

without a quantitative assessment of the accuracy of the tool. This is partially due to

low availability of suitable benchmarking datasets; even if there are sufficient suitable

input datasets available, these are often not accompanied by the necessary metadata

to serve as ground-truth for a benchmark.

Here, synthetic data plays a crucial role in asserting minimum performance require-

ments for novel tools in anticipation of adequate real data. Generators of scRNA-seq

data (e.g. splatter [1], powsimR [2], PROSSTT [3] and SymSim [4]) have already been

widely used to explore the strengths and weaknesses of computational tools, both by

method developers [5, 6, 7, 8] and independent benchmarkers [9, 10, 11]. However,

a limitation of scRNA-seq profiles generators is that they would require significant

methodological alterations to add additional modalities or experimental conditions,

thereby limiting the applicability of each generator.

An ideal experiment would be able to observe all aspects of a cell, including a full

history of its molecular states, spatial positions and environmental interactions [12].

While this falls outside the reach of current experimental technologies, generating

synthetic data in anticipation of new experimental technologies would allow already

developing the next wave of computational tools.

We developed a multi-modality simulator of single cells called dyngen (Figure 2.1A).

dyngen uses Gillespie’s stochastic simulation algorithm [13] to simulate gene regula-

tion, splicing and translation at a single-molecule level. Its methodology allows track-

ing ofmany layers of information throughout the simulation, including the abundance

of any molecule in the cell, progression of the cell along a dynamic process, and the

activation strength of individual regulatory interactions. dyngen can simulate a large

variety of dynamic processes (e.g. cyclic, branching, disconnected) as well as a broad

range of experimental conditions (e.g. batch effects and time-series, perturbation and

knockdown experiments). The fine-grained controls over simulation parameters al-

low dyngen to be applicable to a broad range of use-cases. We demonstrate this

by performing first quantitative evaluations of two types of novel computational ap-

Page 28 Hello there! Did you stumble across this phrase by accident,
or are you looking for what I think you’re looking for?

2

dyngen: Benchmarking with in silico single cells.

proaches, namely RNA velocity and casewise network inference.

Cell 1

Cell 2

Simulation time
E

xp
re

ss
io

n
E

xp
re

ss
io

n

Simulation
time

Start

End

gene expression
trajectory ground-truth
regulatory network
gene regulation dynamics

A

B

Gene regulatory network Simulate expression over time Combine simulations Sample cells & map to backbone

Simulation of experiments Extracted data from simulation

snapshot cell sampling
time series cell sampling

batch effects
external perturbations

trajectory inference
network inference

dimensionality reduction
batch effect correction

trajectory alignment

Figure 2.1: Showcase of dyngen functionality. A: The typical process of generating a dataset
with dyngen. B: Evaluating different types of computational tools requires simulating different
types of experiments and extracting different layers of information from the simulation.

2.2 Results

A cell consists of a set of molecules, the abundance of which are affected by a set of

reactions: transcription, splicing, translation, and degradation (Figure 2.2A). A gene

regulatory network (GRN) defines the reactions that are allowed to occur (Figure 2.2B),

which is constructed in such a way that cells slowly develop over time (Figure 2.2C,D).

With every time step dt in the simulation, the probability of a reaction occurring is

computed (not shown). From the probabilities are sampled which reactions occur

during this time step dt (Figure 2.2E).

dyngen returns many modalities throughout the whole simulation: molecular abun-

dance, cellular state, number of reaction firings, reaction likelihoods, and regulation

activations (Figure 2.2C–F). These modalities can serve both as input data and ground

truth for benchmarkingmany types of computational approaches. For example, a net-

work inference method could use mRNA abundance and cellular states as inputs and

its output could be benchmarked against the gold standard GRN.

Depending on how the GRN is designed, different cellular developmental processes

can be simulated. dyngen includes generators of GRNs which result in many different

developmental topologies (Figure 2.3), including branching, converging, cyclic and

even disconnected. Custom-defined GRNs offer more fine-grained control over the

simulation.

For every page you turn over in this book,
I feel that there is at least one person who deserves to be thanked

Page 29

dyngen: Benchmarking with in silico single cells.

2

A B

C

D

E

A

Gene pre-mRNA mRNA Protein

B

Gene

Tra
nsc

rip
tio

n

Splic
ing

Tra
nsla

tio
n

Regulatio
n

A* B*

D

C*E
*: basal expression

F

Gene A

Gene B

Gene C

Gene D

Gene E

Gene A Transcription

Gene A Splicing

Gene A Translation

Gene A pre-mRNA degradation

Gene A mRNA degradation

Gene A Protein degradation

0 10 20

0

15

30

0

15

30

0

15

30

0

15

30

0

15

30

0 10 20

0
10
20

0
10
20

0
10
20

0
10
20

0
10
20

0
10
20

Simulation time

Simulation time

E
x
p
re

ss
io

n
N

u
m

b
e
r

o
f
re

a
c
tio

n
s

0.0

0.5

1.0

0.0

0.5

1.0

Molecule

pre-mRNA

mRNA

protein

Reaction type

Protein degradation

mRNA degradation

pre-mRNA degradation

Translation

Splicing

Transcription

0 10 20

0 10 20

Simulation time

Simulation time

P
e
rc

e
n
ta

g
e

R
e
g
u
la

tio
n

Cell state

S1

S2

S3

Interaction

A ⊣ B

B ⊣ C

C → D

D → E

E ⊣ A

Figure 2.2: dyngen models reactions at a single-molecule level and keeps track of multiple
levels of information throughput a simulation. A: Changes in abundance levels are driven
strictly these gene regulatory reactions. B: The input GRN is defined such that it models a
dynamic process of interest. C: The reactions define how abundance levels of molecules change
at any particular timepoint. D: Firing many reactions can significantly alter the cellular state
over time. E: dyngen keeps track of the reactions that were fired during small intervals of time.
F: Similarly, dyngen can also keep track of the regulatory activity of every interaction.

Together, these qualities allow it to be applicable in benchmarking a broad range of

use-cases. In practice, dyngen has already successfully been used to evaluate tra-

jectory inference [10], trajectory-based differential expression [14], and network in-

Page 30 a thousand times over for their continued love, sacrifices and support.
So here we go, until the end of the book: Thank you! Thank you!

2

dyngen: Benchmarking with in silico single cells.

A B C

D E F

G H I

Figure 2.3: Multiple executions of dyngen with different predefined backbones. From each
simulation of about 200 genes, 1000 cells were sampled. A: Linear. B: Bifurcating. C: Converging.
D: Cyclic. E: Bifurcating loop. F: Bifurcating converging. G: Consecutive branching. H: Binary
tree. I: Disconnected.

ference [15] methods. To demonstrate this point even further, we apply dyngen on

several promising novel computational approaches which have recently had a major

impact on how single-cell analyses are performed but for which quantitative assess-

ment of the performance was hitherto lacking.

2.2.1 RNA velocity

In eukaryotes, a gene is first transcribed to a pre-mRNA, and subsequently spliced into

maturemRNA. Because reads coming from both unspliced and spliced transcripts are

observed in expression data, the relative ratio between the two can tell us something

about which genes are increasing, decreasing or remaining the same [16, 17]. To de-

termine this, some parameters have to be estimated to determine which fraction of

unspliced and splicedmRNAs corresponds to an increase or decrease. The estimation

of these parametersmakes some assumptions, and can be handled in different ways in

the two main algorithms that are now available for RNA velocity estimation: velocyto

[17] and scvelo [18]. It can be difficult to obtain ground truth data to benchmark these

algorithms, given that it would require continuous data of transcriptional dynamics

in individual cells. On the other hand, the ground truth velocity is rapidly extracted

from the dyngen model, by looking whether each transcript is currently increasing or

Thank you! Thank you! Thank you! Thank you! Thank you! Thank you!
Thank you! Thank you! Thank you! Thank you! Thank you! Thank you!

Page 31

dyngen: Benchmarking with in silico single cells.

2

decreasing in expression.

We tested scvelo and velocyto on 8 datasets containing linear, bifurcating, discon-

nected and cyclic trajectories, and varied the main parameter settings in which they

estimate the velocity. We found that the original velocyto implementation, which as-

sumes that the velocity remains constant in some cells, performed the best across all

datasets. The dynamical estimation of velocyto, as implemented in scvelo, performed

the worst of all parameter settings. This was mainly due to scvelo overestimating the

dynamics of a gene, especially towards upregulation, while velocyto correctly esti-

mated not only when a gene changes, but also when it remained in a steady state.

2.2.2 Casewise network inference

Casewise network inference (CNI) methods1 predict not only which transcription fac-

tors regulate which target genes (Figure 2.5A, top left), but also how active each inter-

action is in every case (Figure 2.5A). In CNI, a ‘case’ might be a cell, but it might also

refer to a bulk sample.

While a few pioneering CNI approaches have already been developed [19, 20, 21], a

quantitative assessment of the performance is hitherto lacking. This is not surprising,

as neither real nor in silico datasets of cell-specific or even cell-type-specific interac-

tions exists that is large enough so that it can be used as a ground-truth for evaluating

CNI methods.

Since dyngen computes tracks the probability of transcription, temporarily ‘knocking

down’ the expression of a regulator and observing the change in transcription proba-

bility. This is a much more accurate ground-truth for regulatory interaction between

a regulator and target in comparison to observing the change in transcript abundance

levels when knocking down a regulator, as the regulation of the target could be indi-

rect.

We used this ground-truth to compare the performance of three CNI methods (Fig-

ure 2.5B). We calculated the AUROC and AUPR score – which are common metrics

for NI benchmarking – for each cell individually. Computing the mean AUROC and

AUPR per dataset showed that pySCENIC significantly outperforms LIONESS and SSN.

This comparison could be extended to include analyses on the scalability of execution

time w.r.t dataset size, the stability of the results in function of noise, and the usability

toward end users.

1Other terms are commonly used when dealing with data from a particular source. For example, single-
cell NI when applied to single-cell transcriptomics data; sample-specific NI when applied to bulk transcrip-
tomics; patient-derived NI when applied to bulk profiles of patients.

Page 32 Thank you! Thank you! Thank you! Thank you! Thank you! Thank you!
Thank you! Thank you! Thank you! Thank you! Thank you! Thank you!

2

dyngen: Benchmarking with in silico single cells.

0.1

0.2

0.3

0.4

scvelo
deterministic

scvelo
dynamical

scvelo
stochastic

velocyto
constant_unspliced

velocyto
constant_velocity

C
or

re
la

tio
n

(h
ig

he
r

is
 b

et
te

r)

backbone bifurcating cycle disconnected linear linear_simple

A

A

B C

D

E

F

Trajectory
B

min max

Expression

Expression of a gene that goes up and down

−2 0 2

Velocity

Ground truth velocity

deterministic

scvelo
C

dynamical

scvelo
stochastic

scvelo
constant_velocity

velocyto
constant_unspliced

velocyto

D

Figure 2.4: dyngen allows benchmarking of RNA velocity methods. A: We tested five different
methods and parameter settings for the estimation of RNA velocity on datasets with varying
backbones (colours). Overall, the velocyto method with the constant velocity assumption per-
formed the best overall. B: An example bifurcating dataset, with as illustration the expression
and ground truth velocity of a gene that goes up and down in the trajectory. C: The RNA
velocity estimates of the different methods. D: The embedded RNA velocity of the different
methods.

Thank you! Thank you! Thank you! Thank you! Thank you! Thank you!
Okay, enough with the silly business.

Page 33

dyngen: Benchmarking with in silico single cells.

2
●●

●●●

●●

●●
●

●●● ●●

●
●●

●●●

●●
●

●●

●
●●

●●
●

●●●
●
●
●

●●

●●●

●●

●●

●●●
●●

●●

●
●●●

●●●
●
●●

●
●
●

●●

●
●●
●

●
●
●●

●●
● ●

●●●

●●●
●

●

●●
●●

●●

●●
●

●● ●●●●
●●

●● ●●

●●
●

●
●●

●●

●●
●

●●
●

●●●
●
●

●●
●

●
●●

●
●

●

●
●
●

●
●
●
●

●
●●

●●

●

●

●
●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●
●

●●
●

●●
●

●●

●
●

●

●●

●●●

●●

●●
●

●●● ●●

●
●●

●●●

●●
●

●●

●
●●

●●
●

●●●
●
●
●

●●

●●●

●●

●●

●●●
●●

●●

●
●●●

●●●
●
●●

●
●
●

●●

●
●●
●

●
●
●●

●●
● ●

●●●

●●●
●

●

●●
●●

●●

●●
●

●● ●●●●
●●

●● ●●

●●
●

●
●●

●●

●●
●

●●
●

●●●
●
●

●●
●

●
●●

●
●

●

●
●
●

●
●
●
●

●
●●

●●

●

●

●
●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●
●

●●
●

●●
●

●●

●
●

●

●●

●●●

●●

●●
●

●●● ●●

●
●●

●●●

●●
●

●●

●
●●

●●
●

●●●
●
●
●

●●

●●●

●●

●●

●●●
●●

●●

●
●●●

●●●
●
●●

●
●
●

●●

●
●●
●

●
●
●●

●●
● ●

●●●

●●●
●

●

●●
●●

●●

●●
●

●● ●●●●
●●

●● ●●

●●
●

●
●●

●●

●●
●

●●
●

●●●
●
●

●●
●

●
●●

●
●

●

●
●
●

●
●
●
●

●
●●

●●

●

●

●
●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●
●

●●
●

●●
●

●●

●
●

●

●●

●●●

●●

●●
●

●●● ●●

●
●●

●●●

●●
●

●●

●
●●

●●
●

●●●
●
●
●

●●

●●●

●●

●●

●●●
●●

●●

●
●●●

●●●
●
●●

●
●
●

●●

●
●●
●

●
●
●●

●●
● ●

●●●

●●●
●

●

●●
●●

●●

●●
●

●● ●●●●
●●

●● ●●

●●
●

●
●●

●●

●●
●

●●
●

●●●
●
●

●●
●

●
●●

●
●

●

●
●
●

●
●
●
●

●
●●

●●

●

●

●
●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●
●

●●
●

●●
●

●●

●
●

●

●●

●●●

●●

●●
●

●●● ●●

●
●●

●●●

●●
●

●●

●
●●

●●
●

●●●
●
●
●

●●

●●●

●●

●●

●●●
●●

●●

●
●●●

●●●
●
●●

●
●
●

●●

●
●●
●

●
●
●●

●●
● ●

●●●

●●●
●

●

●●
●●

●●

●●
●

●● ●●●●
●●

●● ●●

●●
●

●
●●

●●

●●
●

●●
●

●●●
●
●

●●
●

●
●●

●
●

●

●
●
●

●
●
●
●

●
●●

●●

●

●

●
●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●
●

●●
●

●●
●

●●

●
●

●

●●

●●●

●●

●●
●

●●● ●●

●
●●

●●●

●●
●

●●

●
●●

●●
●

●●●
●
●
●

●●

●●●

●●

●●

●●●
●●

●●

●
●●●

●●●
●
●●

●
●
●

●●

●
●●
●

●
●
●●

●●
● ●

●●●

●●●
●

●

●●
●●

●●

●●
●

●● ●●●●
●●

●● ●●

●●
●

●
●●

●●

●●
●

●●
●

●●●
●
●

●●
●

●
●●

●
●

●

●
●
●

●
●
●
●

●
●●

●●

●

●

●
●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●
●

●●
●

●●
●

●●

●
●

●

GRN of cell 3 GRN of cell 4 GRN of cell 5

Global GRN GRN of cell 1 GRN of cell 2

−1.0

−0.5

0.0

0.5

1.0

Regulatory
activity

A

●

●

●

●
●

●
●

●

●
●

●

●

●

●

● ●●
●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●●●

●

●

●

● ●

●

●

●
●

●
●

●

●
●

●

●

●

●

● ●●
●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

● ●●
●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●
●

●

●● ●

●
●

●

●

LIONESS pySCENIC SSN*

0.4 0.5 0.6 0.7 0.4 0.5 0.6 0.7 0.4 0.5 0.6 0.7

0.00

0.02

0.04

0.06

mean AUROC

m
ea

n
A

U
P

R Method

●

●

●

LIONESS

pySCENIC

SSN*

B

Figure 2.5: dyngen allows benchmarking Casewise Network Inference (CNI) methods. A: A
cell is simulated using the global gene regulatory network (GRN, top left). However, at any
particular state in the simulation, only a fraction of the gene regulatory interactions are active.
B: CNI methods were executed to predict the regulatory interactions that are active in each
cell specifically. Using the ground-truth casewise GRN, the performance of each method was
quantified on 14 dyngen datasets.

2.3 Discussion

As is, dyngen’s single cell simulations can be used to evaluate common single-cell

omics computational methods such as clustering, batch correction, trajectory infer-

ence and network inference. However, the combined effect of these advantages re-

sults in a framework that is flexible enough to adapt to a broad range of applications.

This may include methods that integrate clustering, network inference and trajectory

inference. In this respect, dyngen may promote the development of new tools in the

single-cell field similarly as other simulators have done in the past [22, 23].

dyngen ultimately allows anticipating technological developments in single-cell multi-

omics. In this way, it is possible to design and evaluate the performance and robust-

ness of new types of computational analyses before experimental data becomes avail-

able. In addition, it could also be used to compare which experimental protocol is the

Page 34 Go to the next chapter for more acknowledgements.

2

dyngen: Benchmarking with in silico single cells.

most cost-effective in producing the qualitative and robust results in downstream

analysis.

Currently, dyngen focuses on simulating cells as standalone entities that are well

mixed. Splitting up the simulation space into separate subvolumes could pave the

way to better study key cellular processes such as cell division, intercellular commu-

nication and migration [24].

2.4 Methods

The workflow to generate in silico single cell data consists of six main steps (Fig-

ure 2.6).

2.4.1 Defining the backbone: modules and states

One of the main processes involved in cellular dynamic processes is gene regula-

tion, where regulatory cascades and feedback loops lead to progressive changes in

expression and decision making. The exact way a cell chooses a certain path during

its differentiation is still an active research field, although certain models have already

emerged and been tested in vivo. One driver of bifurcation seems to be mutual antag-

onism, where two genes strongly repress each other [25, 26], forcing one of the two

to become inactive [27]. Such mutual antagonism can be modelled and simulated

[28, 29]. Although the two-gene model is simple and elegant, the reality is frequently

more complex, with multiple genes (grouped into modules) repressing each other

[30].

To start a dyngen simulation, the user needs to define a module network and a back-

bone. The module network defines how sets of co-regulated genes, called modules,

regulate each other. The module network is what mainly determines which dynamic

processes occur within the simulated cells. The backbone is a separate set of simu-

lations in which the ground-truth topology of the dynamic processes are defined, as

it is difficult to determine the topology of the dynamic processes from the module

network itself.

Amodule network consists ofmodules connected together by regulatory interactions.

A module may have basal expression, which means genes in this module will be tran-

scribed without the presence of transcription factor molecules. A module marked as

“active during the burn phase” means that this module will be allowed to generate ex-

pression of its genes during an initial warm-up phase (See section 2.4.5). At the end of

the dyngen process, cells will not be sampled from the burn phase simulations. Inter-

Page 35

dyngen: Benchmarking with in silico single cells.

2

D Calculate average expression along backbone transitions

S0 S1 S2

S3

S4

+A +B
+C

+D

0 1 0 1 0 1 0 1

0

15

Simulation time

m
R

N
A

 e
x
p

re
ss

io
n S0 → S1 S1 → S2 S2 → S3 S2 → S4

A Define module network B Generate GRN C Convert GRN to set of reactions

D

C

BA*

A_TF1 B_TF1

Gene pre-mRNA mRNA Protein Gene

Tra
nsc

rip
tio

n

Splic
ing

Tra
nsla

tio
n

Regulatio
n

A_TF1A_TF1 B_TF1

E Simulate single cells and map to backbone

0 10

0

25

Simulation time

m
R

N
A

 e
xp

re
s
si

o
n

Comp1

C
o

m
p

2

S1

S2

S3

S4

Simulation i out of N

F Perform experiment; sample cells and molecules

Sample

cells

Sample

molecules

(Input)

(Input)

Figure 2.6: The workflow of dyngen is comprised of six main steps. A: The user needs to specify
the desired module network or use a predefined module network. B: Each gene in a module is
is regulated by one or more transcription factors from the upstream module. Additional target
genes are generated. C: Each gene regulatory interaction in the GRN is converted to a set of
biochemical reactions. D: Along with the module network, the user also needs to specify the
backbone structure of expected cell states. The average expression of each edge in the backbone
is simulated by activating a restricted set of genes for each edge. E: Multiple Gillespie SSA
simulations are run using the reactions defined in step C. The counts of each of the molecules
at each time step are extracted. Each time step is mapped to a point in the backbone. F: The
molecule levels of multiple simulations are shown over time (left). From each simulation, multiple
cells are sampled (from left to middle). Technical noise from profiling is simulated by sampling
molecules from the set of molecules inside each cell (from middle to right).

actions between modules have a strength (which is a positive integer) and an effect

(+1 for upregulating, -1 for downregulating).

Page 36

2

dyngen: Benchmarking with in silico single cells.

Several examples of module networks are given (Figure 2.7). A simple chain of mod-

ules (where one module upregulates the next) results in a linear process. By having

the last module repress the first module, the process becomes cyclic. Two modules

repressing each other is the basis of a bifurcating process, though several chains of

modules have to be attached in order to achieve progression before and after the

bifurcation process. Finally, a converging process has a bifurcation occurring during

the burn phase, after which any differences in module regulation is removed.

Note that these examples represent the bare minimum in terms of number of mod-

ules used. Using longer chains of modules is typically desired. In addition, the fate

decisions made in this example of a bifurcation is reversible, meaning cells can be

reprogrammed to go down a different differentiation path. If this effect is undesirable,

more safeguards need to be put in place to prevent reprogramming from occurring

(Section 2.4.1).

Module network Backbone state network

Linear
A* B C S0 S1

+A
S2

+B
S3

+C

Cyclic
A* B

D

C

E

S0 S1
+A,+B,+C

+D,+E,-C
S2

S3

+C,-A,-B

+A,+B,-D,-E

Bifurcating

A*

B

C

D

E

Converging

A*

B

C

D

E

F S1 +B,+D

S2

S3
+C,+E

S0
+A

+F,+
D

S4

+F,+E

M Module of genes

M* Module with basal expression

M Module is active during burn phase

Module M upregulates module NM N

Module M downregulates module NM N

Cellular stateS

State S transitions to TS T

Transition is part of burn phaseS T

Active modules of T are

the active modules of S

including M excluding N

S T
+M,-N

Legend

S1 +B,+D

S2

S3
+C,+E

S0
+A

Figure 2.7: Example module networks.

In addition to the module network, the user also needs to define a network of cel-

lular states called the “backbone”. Before simulating any cells, each transition in the

backbone is simulated separately to obtain the average changes in expression along

Page 37

dyngen: Benchmarking with in silico single cells.

2

that transition (Figure 2.6D). As part of the backbone, the user needs to specify which

modules are allowed to alter its expression from one state to another. For example,

in order to transition from state S0 to S1 in the cyclic example, gene modules A, B and

C are turned on and a simulation is allowed to run. To transition from S1 to S2, gene

modules D and E are turned on, and expression of gene module C is kept constant.

To transition from S2 to S3, C is turned on again and now A and B are fixed. Finally, to

transition from S3 to S1 again, A and B are turned on again and D and E are fixed again.

Demonstrations of the backbone will be explained in more detail in section 2.4.4.

Backbone lego

The backbone canmake use of one or more “backbone lego” (BBL) pieces (Figure 2.8).

A BBL consists of one or more modules which regulate each other such that the

output modules present a specific behaviour, depending on the input module (Fig-

ure 2.8A). Parameters allow determining the number of modules involved in the pro-

cess and the number of outputs. Multiple BBLs can be chained together in order to

intuitively create module networks and corresponding state networks (Figure 2.8B).

Note that not all dynamic processes can be represented by a combination of BBLs,

but they can serve as common building blocks to aid the construction of the back-

bone.

When the input node of a linear BBL (Figure 2.8C) is upregulated, the module the BBL

is connected to will be upregulated. A simple chain is a set of modules where a mod-

ule upregulates the next. A chain with double repression has an uneven number of

modules forming a chain where each module downregulates the next but all mod-

ules (except the input) have basal expression. A grid with double repression is similar;

except that modules do not have basal expression but instead get upregulated by an

upstream module in the chain. Finally, a flip flop} consists of a simple chain where

first the modules (except the last) are upregulated. Once the second to last module is

upregulated, that module upregulates itself and the first module is strongly repressed,

causing all other modules to lose expression and finally the last module to be upreg-

ulated. The flip flop retains this output state, even when the input changes.

When the input node of a branching BBL (Figure 2.8D) is upregulated, a subset of its

output modules will eventually be upregulated. A simple branching uses reciprocal

inhibition to drive the upregulation of one of the output modules. Due to its sim-

plicity, however, multiple output modules might be upregulated simultaneously and

over long periods of simulation time it might be possible that the choice of upregu-

lated module changes. A robust branching improves upon the simple branching by

preventing upregulation of output modules until an internal branching decision has

beenmade, and by repressing the decisionmechanism to avoid other outputmodules

Page 38

2

dyngen: Benchmarking with in silico single cells.

Input(s) Output(s)

Size parameter,
a part that can
be duplicated

A Anatomy of a
 "backbone lego"

0

1

0 t

0

1

0 t

Output 1

Output 2

Start Linear Branching

Linear

End

End

B Composition of backbone legos

× N, N ≥ 0

*

× N, N ≥ 1

*

Simple chain Chain with double repression

Grid with double repression Flip flop

× N, N ≥ 0
× N, N ≥ 1

Simple branching Robust branching

× N, N ≥ 1

× M, M ≥ 0

× N, N ≥ 1

× M, M ≥ 0

C Linear

D Branching

E Leaf

* Linear Linear

Start End

Figure 2.8: Reusable regulatory building blocks that can be used to construct GRNs that result
in dynamic processes following an expected pattern. A: Each building block contains genes
which serve as inputs that can be regulated by external transcription factors. The connections
inside the building block transform the input signal in a particular way and has one or more output
interactions of which the targets are not yet determined. B: By connecting multiple building
blocks together, a backbone of regulatory modules can be formed. C: dyngen offers several vari-
ations of linear building blocks which allow for differing regulatory mechanisms. D: A branching
module will upregulate the expression of just one of the output interactions. Two variations are
given of which the simple variant is more prone to reprogramming events in comparison to the
robust branching module. E,F: These components allow to specify the beginning (no inputs)
and end (no outputs) of the backbone.

being upregulated other than the one that has been chosen.

A leaf BBL (Figure 2.8E) is a linear BBL that has either no inputs or no outputs. A start

BBL is a linear BBL where the first module has basal expression, and all modules in this

module will be active during the burn-in phase of the simulation (Section 2.4.4). An

end BBL is also a linear BBL with its output regulating one final module.

Page 39

dyngen: Benchmarking with in silico single cells.

2
2.4.2 Generating the gene regulatory network

The GRN is generated based on the given backbone in four main steps (Figure 2.9).

DC

B

A*
Generate TFs

per module

Connect each TF

with regulators

Sample

target subnetwork

from FANTOM5

Sample

housekeeping

subnetwork

from FANTOM5

Figure 2.9: Generating the feature network from a backbone consists of four main steps.

Step 1, sampling the transcription factors (TF). The TFs are the main drivers of the

molecular changes in the simulation. The user provides a backbone and the number

of TFs to generate. Each TF is assigned to a module such that each module has at

least x parameters (default x = 1). A TF inherits the ‘burn’ and ‘basal expression’ from

the module it belongs to.

Step 2, generating the TF interactions. Let each TF be regulated according to the in-

teractions in the backbone. These interactions inherit the effect, strength, and coop-

erativity parameters from the interactions in the backbone. A TF can only be regulated

by other TFs or itself.

Step 3, sampling the target subnetwork. A user-defined number of target genes are

added to the GRN. Target genes are regulated by a TF or another target gene, but

is always downstream of at least one TF. To sample the interactions between target

genes, one of the many FANTOM5 [31] GRNs is sampled. The currently existing TFs

are mapped to regulators in the FANTOM5 GRN. The targets are drawn from the FAN-

TOM5 GRN, weighted by their page rank value. For each target, at most x regulators

are sampled from the induced FANTOM5 GRN (default x = 5). The interactions con-

necting a target gene and its regulators are added the GRN.

Step 4, sampling the housekeeping subnetwork. Housekeeping genes are com-

pletely separate from any TFs or target genes. A user-defined set of housekeeping

genes are also sampled from the FANTOM5 GRN. The interactions of the FANTOM5

GRN are first subsampled such that the maximum in-degree of each gene is x (default

x = 5). A random gene is sampled and a breadth-first-search is performed to sample

the desired number of housekeeping genes.

Page 40

2

dyngen: Benchmarking with in silico single cells.

2.4.3 Convert gene regulatory network to a set of reactions

Simulating a cell’s GRN makes use of a stochastic framework which tracks the abun-

dance levels of molecules over time in a discrete quantity. For every gene G, the abun-

dance levels of three molecules are tracked, namely of corresponding pre-mRNAs,

mature mRNAs and proteins, which are represented by the terms wG, xG and yG re-

spectively. TheGRN defines how a reaction affects the abundance levels ofmolecules

and how likely it will occur. Gibson and Bruck [32] provide a good introduction tomod-

elling gene regulation with stochastic frameworks, on which many of the concepts

below are based.

For every gene in the GRN a set of reactions are defined, namely transcription, splic-

ing, translation, and degradation. Each reaction consists of a propensity function – a

formula f(.) to calculate the probability f(.) × dt of it occurring during a time interval

dt – and the effect – how it will affect the current state if triggered.

The effects of each reactionmimic the respective biological processes (Table 2.1, mid-

dle). Transcription of gene G results in the creation of a single pre-mRNA molecule

wG. Splicing turns one pre-mRNA wG into a mature mRNA wG. Translation uses a ma-

ture mRNA xG to produce a protein yG. Pre-mRNA, mRNA and protein degradation

results in the removal of a wG, xG, and yG molecule, respectively.

The propensity of all reactions except transcription are all linear functions (Table 2.1,

right) of the abundance level of some molecule multiplied by a constant drawn from

a normal distribution (Table 2.2). The propensity of transcription of a gene G depends

on the abundance levels of its TFs.

Table 2.1: Reactions affecting the abundance levels of pre-mRNA wG, mature mRNA xG

and proteins yG of gene G. Define the set of regulators of G as RG, the set of upregulating
regulators of G as R+

G, and the set of downregulating regulators of G as R−
G. Parameters used

in the propensity formulae are defined in Table 2.2.

Reaction Effect Propensity

Transcription ∅ → wG wprG ×

baG−co
|R+

G
|

G
+

∏
H∈R+

G

(coG+χG,H)∏
H∈RG

(1+χG,H)

Pre-mRNA degradation wG → ∅ wdrG × wG

Splicing wG → xG wsrG × wG

Mature mRNA degradation xG → ∅ xdrG × xG

Translation xG → xG + yG yprG × xG

Protein degradation yG → ∅ ydrG × yG

The propensity of the transcription of a gene G is inspired by thermodynamic models

of gene regulation [33], in which the promoter of G can be bound or unbound by a

Page 41

dyngen: Benchmarking with in silico single cells.

2

Table 2.2: Default parameters defined for the calculation of reaction propensity functions.

Parameter Symbol Definition

Transcription rate wprG ∈ N(50, 10), ≥ 10
Splicing rate wsrG ∈ N(5, 1), ≥ 1
Translation rate yprG ∈ N(5, 1), ≥ 1
Pre-mRNA half-life whlG ∈ N(0.15, 0.03), ≥ 0.05
Mature mRNA half-life xhlG ∈ N(0.15, 0.03), ≥ 0.05
Protein half-life rate yhlG ∈ N(0.25, 0.05), ≥ 0.1
Interaction strength strG,H ∈ 10U(0,2) *
Hill coefficient hillG,H ∈ U(0.5, 2) *
Cooperativity factor coG ∈ [0, 1] *
Pre-mRNA degradation rate wdrG = ln(2) / whlG
Mature mRNA degradation rate xdrG = ln(2) / xhlG
Protein degradation rate ydrG = ln(2) / yhlG
Dissociation constant disH = 0.5 × wprH×wsrH×yprH

(wdrH +wsrH)×xdrH×ydrH

Binding χG,H = (strG,H × yH / disH)hillG,H

Basal expression baG =

1 if R+

G = ∅
0.0001 if R−G = ∅ and R+

G ̸= ∅
0.5 otherwise

*

*: unless G is a TF, then the value is determined by the backbone.

set of N transcription factors Hi. Let f(y1, y2, . . . , yN) denote the propensity function

of G, in function of the abundance levels of the transcription factors. The following

subsections explain and define the propensity function when N = 1, N = 2, and finally

for an arbitrary N .

Propensity of transcription when N = 1

In the simplest case when N = 1, the promoter can be in one of two states. In state S0,

the promoter is not bound by any transcription factors, and in state S1 the promoter is

bound by H1. Each state Sj is linked with a relative activation αj , a number between 0

and 1 representing the activity of the promoter at this particular state. The propensity

function is thus equal to the expected value of the activity of the promoter multiplied

by the pre-mRNA production rate of G.

f(y1, y2, . . . , yN) = wpr ·
2N−1∑
j=0

αj · P (Sj) (2.1)

(2.2)

For N = 1, P (S1) is equal to the Hill equation, where ki represents the concentration

Page 42

2

dyngen: Benchmarking with in silico single cells.

of Hi at half-occupation and ni represents the Hill coefficient. Typically, ni is between

[1,10]

P (S1) = yn1
1

kn1
1 + yn1

1
(2.3)

= (y1/k1)n1

1 + (y1/k1)n1
(2.4)

The Hill equation can be simplified by letting νi =
(

yi

ki

)ni

.

P (S1) = ν1

1 + ν1
(2.5)

Since P (S0) = 1−P (S1), the activation function is formulated and simplified as follows.

f(y1) = wpr · (α0 · P (S0) + α1 · P (S1)) (2.6)

= wpr ·
(

α0 · 1
1 + ν1

+ α1 · ν1

1 + ν1

)
(2.7)

= wpr · α0 + α1 · ν1

1 + ν1
(2.8)

(2.9)

Propensity of transcription when N = 2

When N = 2, there are four states Sj . The relative activations αj can be defined such

that H1 and H2 are independent (additive) or synergistic (multiplicative). In order to

define the propensity of transcription f(.), the Hill equation P (Sj) is extended for two

transcription factors.

Let wj be the numerator of P (Sj), defined as the product of all transcription factors

bound in that state:

w0 = 1 (2.10)

w1 = ν1 (2.11)

w2 = ν2 (2.12)

w3 = ν1 · ν2 (2.13)

Page 43

dyngen: Benchmarking with in silico single cells.

2

The denominator of P (Sj) is then equal to the sum of all wj . The probability of state

Sj is thus defined as:

P (Sj) = wj∑j<2N

j=0 wj

(2.14)

= wj

1 + ν1 + ν2 + ν1 · ν2
(2.15)

= wj∏i≤N
i=1 (νi + 1)

(2.16)

Substituting P (Sj) and wj into f(.) results in the following equation:

f(y1, y2) = wpr ·
2N−1∑
j=0

αj · P (Sj) (2.17)

= wpr ·
∑2N−1

j=0 αj · wj∏i≤N
i=1 (νi + 1)

(2.18)

= wpr · α0 + α1 · ν1 + α2 · ν2 + α3 · ν1 · ν2

(ν1 + 1) · (ν2 + 1)
(2.19)

(2.20)

Propensity of transcription for an arbitrary N

For an arbitrary N , there are 2N states Sj . The relative activations αj can be defined

such that H1 and H2 are independent (additive) or synergistic (multiplicative). In order

to define the propensity of transcription f(.), the Hill equation P (Sj) is extended for

N transcription factors.

Let wj be the numerator of P (Sj), defined as the product of all transcription factors

bound in that state:

wj =
i≤N∏
i=1

(j mod i) = 1 ? νi : 1 (2.21)

The denominator of P (Sj) is then equal to the sum of all wj . The probability of state

Sj is thus defined as:

Page 44

2

dyngen: Benchmarking with in silico single cells.

P (Sj) = wj∑j<2N

j=0 wj

(2.22)

= wj∏i≤N
i=1 (νi + 1)

(2.23)

Substituting P (Sj) into f(.) yields:

f(y1, y2, . . . , yN) = wpr ·
2N−1∑
j=0

αj · P (Sj) (2.24)

= wpr ·
∑2N−1

j=0 αj · wj∏i≤N
i=1 (νi + 1)

(2.25)

Propensity of transcription for a large N

For large values of N , computing f(.) is practically infeasible as it requires performing

2N summations. In order to greatly simplify f(.), αj could be defined as 0 when one

of the regulators inhibits transcription and 1 otherwise.

αj =

0 if ∃i : j mod i = 1 and Hi represses G

1 otherwise
(2.26)

Substituting equation 2.26 into equation 2.25 and defining R = {1, 2, . . . , N} and R+ =
{i|Hi activates G} yields the simplified propensity function:

f(y1, y2, . . . , yN) = wpr ·
∏

i∈R+(νi + 1)∏
i∈R(νi + 1)

(2.27)

Independence, synergism and basal expression

The definition of αj as in equation 2.26 presents two main limitations. Firstly, since

α0 = 1, it is impossible to tweak the propensity of transcription when no transcrip-

tion factors are bound. Secondly, it is not possible to tweak the independence and

synergism of multiple regulators.

Let ba ∈ [0, 1] denote the basal expression strength G (i.e. how much will G be ex-

pressedwhen no transcription factors are bound), and sy ∈ [0, 1] denote the synergism

Page 45

dyngen: Benchmarking with in silico single cells.

2

of regulators Hi of G, the transcription propensity becomes:

f(y1, y2, . . . , yN) = wpr ·
ba − sy|R

+| +
∏

i∈R+(νi + sy)∏
i∈R(νi + 1)

(2.28)

2.4.4 Compute average expression along backbone transitions

When simulating the developmental backbone, we go through the edges of the back-

bone state network defined in an earlier step (Section 2.4.1), starting from the root

state. It is assumed the root state has no modules active and has no expression of

any molecules. To get to the next state, we follow a transition starting from the root

state, activate and deactivate themodules as indicated by the transition, and compute

the average molecule abundance along the transition. To compute the average abun-

dance, we perform small time steps t = 0.001 and let each reaction (Section 2.4.3)

occur t times its propensity.

2.4.5 Simulate single cells

dyngen uses Gillespie’s stochastic simulation algorithm (SSA) [13] to simulate dynamic

processes. An SSA simulation is an iterative process where at each iteration one reac-

tion is triggered.

Each reaction consists of its propensity – a formula to calculate the probability of the

reaction occurring during an infinitesimal time interval – and the effect – how it will

affect the current state if triggered. Each time a reaction is triggered, the simulation

time is incremented by τ = 1∑
j

propj
ln

(1
r

)
, with r ∈ U(0, 1) and propj the propensity

value of the jth reaction for the current state of the simulation.

GillespieSSA2 is an optimised library for performing SSA simulations. The propensity

functions are compiled to C++ and SSA approximations can be used which allow to

trigger many reactions simultaneously at each iteration. The framework also allows

to store the abundance levels of molecules only after a specific interval has passed

since the previous census. By setting the census interval to 0, the whole simulation’s

trajectory is retained but many of these time points will contain very similar informa-

tion. In addition to the abundance levels, also the propensity values and the number

of firings of each of the reactions at each of the time steps can be retained, as well as

specific sub-calculations of the propensity values, such as the regulator activity level

regG,H .

Page 46

2

dyngen: Benchmarking with in silico single cells.

Map SSA simulations to backbone

We compute the Pearson correlation between the state vectors in the simulation and

the average expression levels along a transition in the backbone. Each timepoint in the

SSA simulation is mapped to the point in the backbone that has the highest correlation

value.

2.4.6 Simulate experiment

From the SSA simulation we obtain the abundance levels of all the molecules at every

state. We need to replicate technical effects introduced by experimental protocols in

order to obtain data that is similar to real data. For this, the cells are sampled from the

simulations and molecules are sampled for each of the cells. Real datasets are used

in order to achieve similar data characteristics.

Sample cells

In this step, N cells are sampled the simulations. Two approaches are implemented:

sampling from an unsynchronised population of single cells (snapshot) or sampling at

multiple time points in a synchronised population (time series).

Snapshot The backbone consists of several states linked together by transition edges

with length Li, to which the different states in the different simulations have been

mapped (Figure 2.10A). From each transition, Ni = N/ Li∑
Li

cells are sampled uni-

formly, rounded such that
∑

Ni = N .

Time series Assuming that the final time of the simulations is T , the interval [0, T] is
divided into k equal intervals of width w separated by k − 1 gaps of width g. Ni =
N/k cells are sampled uniformly from each interval (Figure 2.10B), rounded such that∑

Ni = N . By default, k = 8 and g = 0.75. For usual dyngen simulations, 10 ≤ T ≤ 20.
For larger values of T , k and g should be increased accordingly.

Sample molecules

Molecules are sampled from the simulation to replicate how molecules are experi-

mentally sampled. A real dataset is downloaded from a repository of single-cell RNA-

seq datasets [34]. For each in silico cell i, draw its library size lsifrom the distribution

of transcript counts per cell in the real dataset. The capture rate crj of each in silico

molecule type j is drawn from N(1, 0.05). Finally, for each cell i, draw lsi molecules

Page 47

dyngen: Benchmarking with in silico single cells.

2

A Snapshot

S0 S1
2

5

S2

S3

3

4

From:

 S0→S1

 S1→S2

 S2→S3

 S3→S1

Sample:

0 cells (burn)

N × 5 / 12 cells

N × 3 / 12 cells

N × 4 / 12 cells

B Time series

0 T

Simulation time

0 T

Divide into k intervals of width w,

separated by gaps of width g

From:

 Each interval

Sample:

N / k cells

Figure 2.10: Two approaches can be used to sample cells from simulations: snapshot and
time-series.

from the multinomial distribution with probabilities crj × abi,j with abi,j the molecule

abundance level of molecule j in cell i.

2.4.7 Determining the casewise ground-truth regulatory network

Calculating the regulatory effect of a regulator R on a target T (Figure 2.6F) requires

determining the contribution of R in the propensity function of the transcription of

T (section 2.4.3) with respect to other regulators. This information is useful, amongst

others, for benchmarking casewise network inference methods.

The regulatory effect of R on T at a particular state S is defined as the change in the

propensity of transcription when R is set to zero, scaled by the inverse of the pre-

mRNA production rate of T . More formally:

regeffectG = proptransG(S)−proptransG(S[yT←0])
wprG

Determining the regulatory effect for all interactions and cells in the dataset yields the

complete casewise ground-truth GRN (Figure 2.11). The regulatory effect lie between

[−1, 1], where -1 represents complete inhibition of T by R, 1 represents maximal acti-

vation of T by R, and 0 represents inactivity of the regulatory interaction between R

and T .

2.4.8 Comparison of casewise network inference methods

Several datasets were generated using the different predefined backbones. For every

cell in the dataset, the transcriptomics profile and the corresponding casewise ground-

Page 48

2

dyngen: Benchmarking with in silico single cells.

Cell group

Target module

Regulator module

Cell group
sA
sB
sC
sD
sEndC
sEndD

Regulator module
A
B
Burn
C
D
HK
Target

Target module
A
B
Burn
C
D
HK
Target

−1

−0.5

0

0.5

1

Figure 2.11: The casewise regulatory effects of all interactions, computed on cells part of a
bifurcation trajectory. Negative values correspond to inhibitory interactions, positive values to
activating interactions, and zero values correspond to inactive interactions.

truth regulatory network was determined (Section 2.4.7).

Several casewise NImethods were considered for comparison: SCENIC [19], LIONESS

[35, 20], and SSN [21].

LIONESS [20, 36] uses the Pearson correlation to infer casewise GRNs. To do so, first

the Pearson correlation is calculated between regulators and targets for all samples.

Next, the Pearson correlation is again calculated for all samples excluding one sample.

The difference between the two correlationmatrices is considered a casewiseGRN for

that particular profile. This process is repeated for all profiles, resulting in a casewise

GRN.

SSN [21] has, in essence, the exact same methodology as LIONESS. It is worth noting

that the LIONESS preprint was released before the publication of SSN. Since no im-

plementation was provided by the authors, we implemented SSN in R using basic R

and tidyverse functions [37] and marked results from this implementation as ”SSN*”.

SCENIC [19] is a pipeline that consists of four main steps. Step 1: classical network

inference is performed with arboreto, which is similar to GENIE3 [38]. Step 2: select

the top 10 regulators per target. Interactions are grouped together in ‘modules’; each

module contains one regulator and all of its targets. Step 3: filter the modules using

motif analysis. Step 4: for each cell, determine an activity score of each module

using AUCell. As a post-processing of this output, all modules and the corresponding

Page 49

dyngen: Benchmarking with in silico single cells.

2

activity scores are combined back into a casewise GRN consisting of (cell, regulator,

target, score) pairs. For this analysis, the Python implementation of SCENIC was used,

namely pySCENIC. Since dyngen does not generate motif data, step 3 in this analysis

is skipped.

The AUROC and AUPR metrics are common metrics for evaluating a predicted GRN

with a ground-truth GRN. To compare a predicted casewise GRN with the ground-

truth casewise GRN, the top 10’000 interactions per cell were retained. For each

cell-specific network, the AUROC and AUPR were calculated.

2.4.9 Comparison of RNA velocity methods

15 datasets were generated with 5 different backbones: linear, linear simple, bifurcat-

ing, cyclic, and disconnected. We extracted a ground truth RNA velocity by subtract-

ing for each mRNA molecule the propensity of its production by the propensity of

its degradation. If the expression of an mRNA will increase in the future, this value is

positive, while it is negative if it is going to decrease. For each gene, we compared

the ground truth velocity with the observed velocity by calculating the Spearman rank

correlation.

We compared two RNA velocity methods. The velocyto method [17], as imple-

mented in the velocyto.py package, in which we varied the “assumption” parameter

between “constant_unspliced” and “constant_velocity”. The scvelo method [18], as

implemented in the python scvelo package (http://scvelo.de), in which we varied the

“mode” parameter between “deterministic”, “stochastic” and “dynamical”. For both

methods, we used the same normalized data as provided by dyngen, with no extra

cell or feature filtering. We also matched the parameters between both methods as

best as possible, i.e. the k parameter for smoothing was set to 20 for both methods.

To visualize the velocity on an embedding, we used the “velocity_embedding()” func-

tion, implemented in the scvelo Python package.

2.4.10 Code availability

dyngen is available as an open source software package at https://github.com/

dynverse/dyngen. All code used in this study is made publicly available at

https://github.com/rcannood/dyngen_analysis.

Page 50

http://scvelo.de
https://github.com/dynverse/dyngen
https://github.com/dynverse/dyngen
https://github.com/rcannood/dyngen_analysis

2

dyngen: Benchmarking with in silico single cells.

2.5 References

[1] Luke Zappia, Belinda Phipson, and Alicia Oshlack. “Splatter: Simulation of

Single-Cell RNA Sequencing Data”. In: Genome Biology 18 (Sept. 2017), p. 174.

ISSN: 1474-760X. DOI: 10.1186/s13059-017-1305-0.

[2] Beate Vieth et al. “powsimR: Power Analysis for Bulk and Single Cell RNA-Seq

Experiments”. In: Bioinformatics 33.21 (Nov. 1, 2017), pp. 3486–3488. ISSN:

1367-4803. DOI: 10.1093/bioinformatics/btx435.

[3] Nikolaos Papadopoulos, Rodrigo Gonzalo Parra, and Johannes Soeding.

“PROSSTT: Probabilistic Simulation of Single-Cell RNA-Seq Data for Com-

plex Differentiation Processes”. In: bioRxiv (Jan. 2018), p. 256941. DOI:

10.1101/256941.

[4] Xiuwei Zhang, Chenling Xu, and Nir Yosef. “Simulating Multiple Faceted

Variability in Single Cell RNA Sequencing”. In: Nature Communications 10.1

(June 13, 2019), pp. 1–16. ISSN: 2041-1723. DOI: 10.1038/s41467-019-10500-

w.

[5] Kelly Street et al. “Slingshot: Cell Lineage and Pseudotime Inference for Single-

Cell Transcriptomics”. In: BMC Genomics 19.1 (June 2018), p. 477. ISSN: 1471-

2164. DOI: 10.1186/s12864-018-4772-0.

[6] R Gonzalo Parra et al. “Reconstructing Complex Lineage Trees from scRNA-

Seq Data Using MERLoT”. In: bioRxiv (Feb. 2018), p. 261768. DOI: 10 . 1101 /

261768.

[7] Edroaldo Lummertz da Rocha et al. “Reconstruction of Complex Single-Cell

Trajectories Using CellRouter”. In: Nature Communications 9.1 (Mar. 1, 2018),

p. 892. ISSN: 2041-1723. DOI: 10.1038/s41467-018-03214-y.

[8] Yingxin Lin et al. “scClassify: Hierarchical Classification of Cells”. In: bioRxiv

(Jan. 1, 2019), p. 776948. DOI: 10.1101/776948.

[9] Angelo Duò, Mark D. Robinson, and Charlotte Soneson. “A Systematic

Performance Evaluation of Clustering Methods for Single-Cell RNA-

Seq Data”. In: F1000Research 7 (2018), p. 1141. ISSN: 2046-1402. DOI:

10.12688/f1000research.15666.2. pmid: 30271584.

[10] Wouter Saelens et al. “A Comparison of Single-Cell Trajectory Inference

Methods”. In: Nature Biotechnology 37 (May 2019). ISSN: 15461696. DOI:

10.1038/s41587-019-0071-9.

[11] Charlotte Soneson and Mark D. Robinson. “Bias, Robustness and Scalability

in Single-Cell Differential Expression Analysis”. In: Nature Methods 15.4 (Apr.

2018), pp. 255–261. ISSN: 1548-7105. DOI: 10 . 1038 / nmeth . 4612. pmid:

29481549.

Page 51

https://doi.org/10.1186/s13059-017-1305-0
https://doi.org/10.1093/bioinformatics/btx435
https://doi.org/10.1101/256941
https://doi.org/10.1038/s41467-019-10500-w
https://doi.org/10.1038/s41467-019-10500-w
https://doi.org/10.1186/s12864-018-4772-0
https://doi.org/10.1101/261768
https://doi.org/10.1101/261768
https://doi.org/10.1038/s41467-018-03214-y
https://doi.org/10.1101/776948
https://doi.org/10.12688/f1000research.15666.2
30271584
https://doi.org/10.1038/s41587-019-0071-9
https://doi.org/10.1038/nmeth.4612
29481549

dyngen: Benchmarking with in silico single cells.

2

[12] Tim Stuart and Rahul Satija. “Integrative Single-Cell Analysis”. In: Nature Re-

views Genetics 20.5 (May 2019), pp. 257–272. ISSN: 1471-0064. DOI: 10.1038/

s41576-019-0093-7.

[13] Daniel T. Gillespie. “Exact Stochastic Simulation of Coupled Chemical

Reactions”. In: The Journal of Physical Chemistry 81.25 (Dec. 1, 1977),

pp. 2340–2361. ISSN: 0022-3654. DOI: 10.1021/j100540a008.

[14] Koen Van den Berge et al. “Trajectory-Based Differential Expression Analysis

for Single-Cell Sequencing Data”. In: bioRxiv (Jan. 1, 2019), p. 623397. DOI:

10.1101/623397.

[15] Aditya Pratapa et al. “Benchmarking Algorithms for Gene Regulatory Network

Inference from Single-Cell Transcriptomic Data”. In: bioRxiv (June 4, 2019),

p. 642926. DOI: 10.1101/642926.

[16] Amit Zeisel et al. “Coupled Pre-mRNA andmRNADynamics Unveil Operational

Strategies Underlying Transcriptional Responses to Stimuli”. In: Molecular Sys-

tems Biology 7.1 (Jan. 1, 2011), p. 529. ISSN: 1744-4292. DOI: 10.1038/msb.

2011.62.

[17] Gioele La Manno et al. “RNA Velocity of Single Cells”. In:Nature 560.7719 (Aug.

2018), pp. 494–498. ISSN: 1476-4687. DOI: 10.1038/s41586-018-0414-6.

[18] Volker Bergen et al. “Generalizing RNA Velocity to Transient Cell States through

Dynamical Modeling”. In: bioRxiv (Oct. 29, 2019), p. 820936. DOI: 10 .1101/

820936.

[19] Sara Aibar et al. “SCENIC: Single-Cell Regulatory Network Inference

and Clustering”. In: Nature Methods (Oct. 2017). ISSN: 1548-7091. DOI:

10.1038/nmeth.4463.

[20] Marieke Lydia Kuijjer et al. “Estimating Sample-Specific Regulatory Networks”.

In: iScience 14 (Mar. 28, 2019), pp. 226–240. ISSN: 2589-0042. DOI: 10.1016/

j.isci.2019.03.021. pmid: 30981959.

[21] Xiaoping Liu et al. “Personalized Characterization of Diseases Using Sample-

Specific Networks”. In: Nucleic Acids Research 44.22 (2016), e164–e164. ISSN:

0305-1048. DOI: 10.1093/nar/gkw772. pmid: 27596597.

[22] Thomas Schaffter, Daniel Marbach, and Dario Floreano. “GeneNetWeaver: In

Silico Benchmark Generation and Performance Profiling of Network Inference

Methods.”. In: Bioinformatics 27.16 (Aug. 2011), pp. 2263–2270. ISSN: 1367-

4811. DOI: 10.1093/bioinformatics/btr373. pmid: 21697125.

[23] Adam D. Ewing et al. “Combining Tumor Genome Simulation with Crowd-

sourcing to Benchmark Somatic Single-Nucleotide-Variant Detection”. In: Na-

ture Methods 12.7 (July 2015), pp. 623–630. ISSN: 1548-7105. DOI: 10.1038/

nmeth.3407.

[24] Stephen Smith and Ramon Grima. “Spatial Stochastic Intracellular Kinetics: A

Review of Modelling Approaches”. In: Bulletin of Mathematical Biology 81.8

Page 52

https://doi.org/10.1038/s41576-019-0093-7
https://doi.org/10.1038/s41576-019-0093-7
https://doi.org/10.1021/j100540a008
https://doi.org/10.1101/623397
https://doi.org/10.1101/642926
https://doi.org/10.1038/msb.2011.62
https://doi.org/10.1038/msb.2011.62
https://doi.org/10.1038/s41586-018-0414-6
https://doi.org/10.1101/820936
https://doi.org/10.1101/820936
https://doi.org/10.1038/nmeth.4463
https://doi.org/10.1016/j.isci.2019.03.021
https://doi.org/10.1016/j.isci.2019.03.021
30981959
https://doi.org/10.1093/nar/gkw772
27596597
https://doi.org/10.1093/bioinformatics/btr373
21697125
https://doi.org/10.1038/nmeth.3407
https://doi.org/10.1038/nmeth.3407

2

dyngen: Benchmarking with in silico single cells.

(Aug. 1, 2019), pp. 2960–3009. ISSN: 1522-9602. DOI: 10.1007/s11538-018-

0443-1.

[25] N. Rekhtman et al. “Direct Interaction of Hematopoietic Transcription Factors

PU.1 andGATA-1: Functional Antagonism in Erythroid Cells”. In:Genes &Devel-

opment 13.11 (June 1, 1999), pp. 1398–1411. ISSN: 0890-9369. DOI: 10.1101/

gad.13.11.1398. pmid: 10364157.

[26] Heping Xu et al. “Regulation of Bifurcating {B} Cell Trajectories by Mutual An-

tagonism between Transcription Factors {IRF4} and {IRF8}”. In: Nat. Immunol.

16.12 (Dec. 2015), pp. 1274–1281.

[27] Thomas Graf and Tariq Enver. “Forcing Cells to Change Lineages”. In: Nature

462.7273 (Dec. 2009), p. 587. ISSN: 1476-4687. DOI: 10.1038/nature08533.

[28] Jin Wang et al. “Quantifying the Waddington Landscape and Biological

Paths for Development and Differentiation”. In: Proceedings of the National

Academy of Sciences 108.20 (May 2011), pp. 8257–8262. ISSN: 0027-8424,

1091-6490. DOI: 10.1073/pnas.1017017108. pmid: 21536909.

[29] James E Ferrell. “Bistability, Bifurcations, and Waddington’s Epigenetic

Landscape”. In: Current Biology 22.11 (June 2012), R458–R466. ISSN:

0960-9822. DOI: 10.1016/j.cub.2012.03.045.

[30] Nir Yosef et al. “Dynamic Regulatory Network Controlling {TH17} Cell

Differentiation”. In: Nature 496.7446 (2013), pp. 461–468.

[31] Marina Lizio et al. “Gateways to the FANTOM5 Promoter Level Mammalian Ex-

pression Atlas”. In:Genome Biology 16.1 (Jan. 5, 2015), p. 22. ISSN: 1465-6906.

DOI: 10.1186/s13059-014-0560-6.

[32] Michael A. Gibson and Jehoshua Bruck. “A Probabilistic Model of a Prokaryotic

Gene and Its Regulation”. In: Computational Methods in Molecular Biology:

From Genotype to Phenotype, MIT press, Cambridge (2000).

[33] Maria J. Schilstra and Chrystopher L. Nehaniv. “Bio-Logic: Gene Expression

and the Laws of Combinatorial Logic”. In: Artificial Life 14.1 (Jan. 1, 2008),

pp. 121–133. ISSN: 1064-5462. DOI: 10.1162/artl.2008.14.1.121.

[34] Robrecht Cannoodt et al. “Single-Cell -Omics Datasets Containing a

Trajectory”. In: Zenodo (Oct. 2018). DOI: 10.5281/zenodo.1211532.

[35] Marieke Lydia Kuijjer et al. “Estimating Sample-Specific Regulatory Networks”.

In: (2015), pp. 1–19. URL: http://arxiv.org/abs/1505.06440.

[36] Marieke L. Kuijjer et al. “lionessR: Single Sample Network Inference in R”. In:

BMC Cancer 19.1 (Oct. 25, 2019), p. 1003. ISSN: 1471-2407. DOI: 10 . 1186 /

s12885-019-6235-7.

[37] Hadley Wickham et al. “Welcome to the Tidyverse”. In: (Nov. 21, 2019). DOI:

10.21105/joss.01686.

Page 53

https://doi.org/10.1007/s11538-018-0443-1
https://doi.org/10.1007/s11538-018-0443-1
https://doi.org/10.1101/gad.13.11.1398
https://doi.org/10.1101/gad.13.11.1398
10364157
https://doi.org/10.1038/nature08533
https://doi.org/10.1073/pnas.1017017108
21536909
https://doi.org/10.1016/j.cub.2012.03.045
https://doi.org/10.1186/s13059-014-0560-6
https://doi.org/10.1162/artl.2008.14.1.121
https://doi.org/10.5281/zenodo.1211532
http://arxiv.org/abs/1505.06440
https://doi.org/10.1186/s12885-019-6235-7
https://doi.org/10.1186/s12885-019-6235-7
https://doi.org/10.21105/joss.01686

dyngen: Benchmarking with in silico single cells.

2

[38] Vân Anh Huynh-Thu et al. “Inferring Regulatory Networks from Expression

Data Using Tree-Based Methods”. In: PLoS ONE 5.9 (Jan. 2010), e12776. ISSN:

1932-6203. DOI: 10.1371/journal.pone.0012776. pmid: 20927193.

Page 54

https://doi.org/10.1371/journal.pone.0012776
20927193

3 | dynbenchmark: A comparison of single-

cell trajectory inference methods

Abstract

Purpose: Trajectory inference approaches analyse genome-wide omics

data from thousands of single cells and computationally infer the order

of these cells along developmental trajectories. Although more than 75

trajectory inference tools have already been developed, it is challenging

to compare their performance because the input they require and output

models they produce vary substantially.

Results: Here, we benchmark 45 of these methods on 110 real and 229

synthetic datasets for cellular ordering, topology, scalability and usability.

Our results highlight the complementarity of existing tools, and that the

choice of method should depend mostly on the dataset dimensions and

trajectory topology. We develop a set of guidelines to help users select the

best method for their dataset.

Conclusion: Our freely available data and evaluation pipeline will aid in the

development of improved tools designed to analyse increasingly large and

complex single-cell datasets.

Publication status

Published in Nature Biotechnology 37, 5 (2019). doi:10.1038/s41587-019-

0071-9.

Saelens W∗, Cannoodt R∗, Todorov H, and Saeys Y.
∗ Equal contribution

Author contributions

• R.C., W.S., H.T. and Y.S. designed the study.

• R.C. and W.S. performed the experiments and analysed the data.

• R.C., W.S., and H.T. implemented software packages.

• R.C. and W.S. wrote the original manuscript.

• R.C., W.S., H.T., and Y.S. reviewed and edited the manuscript.

• Y.S. supervised the project.

Page 55

http://dx.doi.org/10.1038/s41587-019-0071-9
http://dx.doi.org/10.1038/s41587-019-0071-9

dynbenchmark: A comparison of single-cell trajectory inference methods.

3
3.1 Introduction

Single-cell omics data, including transcriptomics, proteomics and epigenomics data,

provide new opportunities for studying cellular dynamic processes, such as the cell

cycle, cell differentiation and cell activation [1, 2]. Such dynamic processes can be

modelled computationally using trajectory inference (TI) methods, also called pseu-

dotime analysis, which order cells along a trajectory based on similarities in their ex-

pression patterns [3, 4, 5]. The resulting trajectories are most often linear, bifurcat-

ing or tree-shaped, but more recent methods also identify more complex trajectory

topologies, such as cyclic [6] or disconnected graphs [7]. TImethods offer an unbiased

and transcriptome-wide understanding of a dynamic process [1], thereby allowing the

objective identification of new (primed) subsets of cells [8], delineation of a differenti-

ation tree [9, 10] and inference of regulatory interactions responsible for one or more

bifurcations [11]. Current applications of TI focus on specific subsets of cells, but on-

going efforts to construct transcriptomic catalogues of whole organisms [12, 13, 14]

underline the urgency for accurate, scalable [11, 15] and user-friendly TI methods.

A plethora of TI methods has been developed over the past few years and even more

are being created every month (Supplementary Table 3.1). Indeed, in several reposi-

tories listing single-cell tools, such as omictools.org [16], the ‘awesome-single-cell’

list [17] and scRNA-tools.org [18], TI methods are one of the largest categories. While

each method has its own unique set of characteristics in terms of underlying algo-

rithm, required prior information and produced outputs, two of the most distinctive

differences between TI methods are whether they fix the topology of the trajectory

and what type(s) of graph topologies they can detect. Early TI methods typically fixed

the topology algorithmically (for example, linear [19, 8, 20, 21] or bifurcating trajec-

tories [22, 23]) or through parameters provided by the user [24, 25]. These methods

therefore mainly focus on correctly ordering the cells along the fixed topology. More

recent methods also infer the topology [26, 27, 7], which increases the difficulty of the

problem at hand, but allows the unbiased identification of both the ordering inside a

branch and the topology connecting these branches.

Given the diversity in TI methods, it is important to quantitatively assess their perfor-

mance, scalability, robustness and usability. Many attempts at tackling this issue have

already been made [22, 28, 29, 25, 30, 4, 31, 32, 7], but a comprehensive comparison

of TI methods across a large number of different datasets is still lacking. This is prob-

lematic, as new users to the field are confronted with an overwhelming choice of TI

methods, without a clear idea of which would optimally solve their problem. More-

over, the strengths and weaknesses of existing methods need to be assessed, so that

new developments in the field can focus on improving the current state-of-the-art.

Page 56 Yvan, you are an incredible supervisor and group leader.
You always tell the baby PhD students that the first step in a PhD

3

dynbenchmark: A comparison of single-cell trajectory inference methods.

In this study, we evaluated the accuracy, scalability, stability and usability of 45 TImeth-

ods (Figure 3.1a). We found substantial complementarity between current methods,

with different sets of methods performing most optimally depending on the charac-

teristics of the data. For method users, we created an interactive set of guidelines

(available at http://guidelines.dynverse.org), which gives context-specific recommen-

dations for method usage. Our evaluation also highlights some challenges for current

methods, and our evaluation strategy can be useful to spearhead the development of

new tools that accurately infer trajectories on ever more complex use cases.

3.2 Results

3.2.1 Trajectory inference methods

To make the outputs from different methods directly comparable to each other, we

developed a common probabilistic model for representing trajectories from all pos-

sible sources (Figure 3.1b). In this model, the overall topology is represented by a

network of ‘milestones’, and the cells are placed within the space formed by each

set of connected milestones. Although almost every method returned a unique set

of outputs, we were able to classify these outputs into seven distinct groups (Figure

3.2) and we wrote a common output converter for each of these groups (Figure 3.3a).

When strictly required, we also provided prior information to the method. These dif-

ferent priors can range from weak priors that are relatively easy to acquire, such as a

start cell, to strong priors, such as a known grouping of cells, that are much harder to

know a priori, and which can potentially introduce a large bias into the analysis (Figure

3.3a).

The largest difference between TI methods is whether a method fixes the topology

and, if it does not, what kind of topology it can detect. We defined seven possible

types of topology, ranging from very basic topologies (linear, cyclical and bifurcat-

ing) to the more complex ones (connected and disconnected graphs). Most methods

either focus on inferring linear trajectories or limit the search to tree or less com-

plex topologies, with only a selected few attempting to infer cyclic or disconnected

topologies (Figure 3.3a).

We evaluated each method on four core aspects: (1) accuracy of a prediction, given

a gold or silver standard on 110 real and 229 synthetic datasets; (2) scalability with

respect to the number of cells and features (for example, genes); (3) stability of the

predictions after subsampling the datasets; and (4) the usability of the tool in terms

of software, documentation and the manuscript. Overall, we found a large diversity

across the four evaluation criteria, with only a few methods, such as PAGA, Sling-

is not learning to write well, but learning to like to write.
Those words are amazing PhD training wheels.

Page 57

http://guidelines.dynverse.org

dynbenchmark: A comparison of single-cell trajectory inference methods.

3

Guidelines app
Benchmarking pipeline

Method wrappers

45 trajectory
inference
methods

4 metrics
110 real

& 229 synthetic
datasets

Accuracy Scalability Usability

User guidelines
New possibilities
for developers

+ +

+ +

+

+Stability

a b

c

Common probabilistic trajectory model

Milestone
network

Branch
assignment

Topology

Cell positions

a b

c

d e

a
b

c

d e

Multi-
layered

Region of
delayed commitment

Lengths

Topology: HIM

Benchmarking metricsd

Trajectory types

Cycle TreeLinear Bifurcation Multifurcation Disconnected
Graph

Connected
graph

Branch assignment: F1branches Cell positions: cordist Features (genes): wcorfeatureimp

1

2
3

1
2

3

Match branches

Magnitude of overlap

Reference Prediction Geodesic distances between
all pairs of cells

Correlation of distances Correlation of importances

Feature importance

2
3 3 1 1

2

G1
G2
G3

G2
G1

G3
G2

G1

G3+

Difference in relative
edge lengths

Difference in degree
distributions

1
2

3

methods

benchmark
guidelines

.dynverse.org

.dynverse.org

.dynverse.org

3 4

2

Cells

Figure 3.1: Overview of several key aspects of the evaluation. a, A schematic overview of our
evaluation pipeline. b, To make the trajectories comparable to each other, a common trajectory
model was used to represent reference trajectories from the real and synthetic datasets, as well
as any predictions of TI methods. c, Trajectories are automatically classified into one of seven
trajectory types, with increasing complexity. d, We defined four metrics, each assessing the
quality of a different aspect of the trajectory. The HIM score assesses the similarity between
the two topologies, taking into account differences in edge lengths and degree distributions. The
F1branches assesses the similarity of the assignment of cells onto branches. The cordist quantifies
the similarity in cellular positions between two trajectories, by calculating the correlation between
pairwise geodesic distances. Finally, wcorfeatures quantifies the agreement between trajectory
differentially expressed features from the known trajectory and the predicted trajectory.

Page 58 Katleen, thank you for your dedication and perseverance
in guiding me and making sure I got off to a good start in my PhD.

3

dynbenchmark: A comparison of single-cell trajectory inference methods.

Common probabilistic
trajectory model

- Visualise trajectory
- Visualise expression
- Trajectory comparison
- Evaluation
- ...

Apply common
analyses

Input

- Raw counts
- Normalised counts
- Default parameters
- Start cell(s)
- End cell(s)
- Cell groups
- Timecourse
- # of end states
- # of branches
- Marker genes

Output

- Branch network
- Branch assignment
- Branch pseudotime
- Global pseudotime
- End state probabilities
- Cluster assignment
- Cluster network
- Dimensionality reduction
- Cell graph

1

3
4
5
6
7

2

Wrap

required or
optional prior
information

outputs
subset of

TI method

Trajectory
inference

Potential cell
space

Cell positions

Milestones

Edges

Delayed
commitment

a)

b) Wrapper type 6:
orthogonal projection

Wrapper type 5:
cluster assignment

Wrapper type 7:
cell graph

Wrapper type 1:
direct

Wrapper type 2:
linear pseudotime

Wrapper type 4:
end state probability

P(A)

P(B)

Pseudotime

Wrapper type 3:
cyclical pseudotime

Figure 3.2: A common interface for TI methods. a The input and output of each TI method
is standardized. As input, each TI method receives either raw or normalized counts, several
parameters, and a selection of prior information. After its execution, a method uses one of the
seven wrapper functions to transform its output to the common trajectory model. This common
model then allows to perform common analysis functions on trajectory models produced by any
TI method. b Illustrations of the specific transformations performed by each of the wrapper
functions.

I see exciting times ahead for the KDP group, which is overflowing
with enthusiasm and inspiration. I wonder what the future will bring!

Page 59

dynbenchmark: A comparison of single-cell trajectory inference methods.

3 PAGA

RaceID / StemID

SLICER

Slingshot

PAGA Tree

MST

pCreode

SCUBA

Monocle DDRTree

Monocle ICA

cellTree maptpx

SLICE

cellTree VEM

ElPiGraph

Sincell

URD

CellTrails

Mpath

CellRouter

STEMNET

FateID

MFA

GPfates

DPT

Wishbone

SCORPIUS

Component 1

Embeddr

MATCHER

TSCAN

Wanderlust

PhenoPath

topslam

Waterfall

ElPiGraph linear

ouijaflow

FORKS

Angle

ElPiGraph cycle

reCAT

✕

✕

✕

✕

✕

✖

✕

✖

✖

✕

✕

✕

✕

✕

Direct

Proj

Cell

Direct

Direct

Proj

Proj

Cluster

Cell

Cell

Cell

Direct

Cell

Direct

Cell

Direct

Cell

Cluster

Cell

Prob

Prob

Prob

Prob

Direct

Direct

Linear

Linear

Linear

Linear

Linear

Linear

Linear

Linear

Linear

Direct

Linear

Linear

Cycle

Direct

Cycle

Python

R

R

R

Python

R

Python

Python

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Python

R

Python

R

R

R

Python

R

Python

R

Python

R

R

Python

Python

R

R

R

Free

Free

Free

Free

Free

Free

Free

Free

Free

Param

Free

Free

Free

Free

Free

Free

Free

Free

Free

Param

Param

Param

Param

Fixed

Param

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Off-the-shelf

Off-the-shelf

Off-the-shelf

Bifurcation methods

Cyclic methods

Graph methods

Linear methods

Multifurcation methods

Tree methods

Aggregated scores per experimentInferrable trajectory types

Method Summarya) b)

Prio
rs re

quire
d

Wrapper ty
pe

Platfo
rm

Topology in
ference

Cycle
Linear

Bifu
rcatio

n

Multifu
rcatio

n

Tree
Connected

Disconnected

Ove
rall

Accuracy

Scalability

Stability

Usability

Prior information required

✕
✖

None

Weak: Start or end cells

Strong: Cell grouping or time course

Not shown, insufficient data points

CALISTA

cellTree Gibbs

GrandPrix

MERLoT

ouija

pseudogp

SCIMITAR

SCOUP

Figure 3.3: A characterization of the 45 methods evaluated in this study and their overall
evaluation results. a, We characterized the methods according to the wrapper type, their re-
quired priors, whether the inferred topology is constrained by the algorithm (fixed) or a parameter
(param), and the types of inferable topologies. The methods are grouped vertically based on
the most complex trajectory type they can infer. b, The overall results of the evaluation on
four criteria: accuracy using a reference trajectory on real and synthetic data, scalability with
increasing number of cells and features, stability across dataset subsamples and quality of the
implementation. Methods that errored on more than 50% of the datasets are not included in
this figure and are shown instead in Supplementary Figure 3.1.

Page 60 Frank, thank you for giving me the opportunity to start on this journey.
You are an inexhaustible source of new ideas

3

dynbenchmark: A comparison of single-cell trajectory inference methods.

PAGA

RaceID / StemID

SLICER

Slingshot

PAGA Tree

MST

pCreode

SCUBA

Monocle DDRTree

Monocle ICA

cellTree maptpx

SLICE

cellTree VEM

ElPiGraph

Sincell

URD

CellTrails

Mpath

CellRouter

STEMNET

FateID

MFA

GPfates

DPT

Wishbone

SCORPIUS

Component 1

Embeddr

MATCHER

TSCAN

Wanderlust

PhenoPath

topslam

Waterfall

ElPiGraph linear

ouijaflow

FORKS

Angle

ElPiGraph cycle

reCAT

1h

>7d

>7d

>7d

2h

56m

>7d

>7d

1h

>7d

>7d

>7d

>7d

12h

>7d

>7d

>7d

>7d

>7d

1h

1d

5h

>7d

24m

1d

13h

34s

>7d

2h

24m

1d

1h

>7d

47m

2h

>7d

4m

35s

2h

13h

7m

1d

>7d

11h

8m

8m

1d

3d

26m

2d

>7d

>7d

23h

1d

>7d

1d

>7d

>7d

1d

36m

6h

9h

>7d

36m

2h

1h

2m

2d

3h

7m

2h

5h

>7d

8m

2h

>7d

5m

2m

2h

1d

55s

1h

2h

56m

1m

12m

2h

4h

2h

1h

6h

1h

39m

6h

2h

2h

2d

8h

1h

12m

1h

9h

4d

40m

17m

4m

11m

33m

1h

9m

16m

9h

1d

13m

1h

20h

25m

10m

1h

9h

19s

1h

31s

2m

20s

2m

3m

10m

14h

1h

1h

51m

10m

20m

5m

10m

7h

4h

9m

7m

26m

9h

2h

7m

6m

4m

3m

2m

16m

7m

5m

4d

4h

2m

8m

>7d

5m

3m

8m

1d

25s

14h

<1s

52s

15s

52s

58s

3m

2d

1d

24m

1d

15m

7m

2m

1m

4h

1d

9m

6m

20m

7h

13m

56s

7m

4m

51s

34s

3m

11m

7m

>7d

8h

51s

5m

3d

2m

54s

5m

>7d

0.82

0.77

0.99

0.98

0.88

0.90

0.89

0.86

0.86

0.95

0.51

0.78

0.78

0.93

0.97

0.68

0.76

0.90

0.24

0.64

0.71

0.86

0.75

0.76

0.66

0.96

0.92

0.93

0.91

0.96

0.73

0.83

0.99

0.89

0.92

0.80

0.04

0.96

0.92

0.92

Off-the-shelf

Off-the-shelf

Off-the-shelf

Bifurcation methods

Cyclic methods

Graph methods

Linear methods

Multifurcation methods

Tree methods

Per dataset sourcePer metric Per trajectory type
Predicted time

(#cells × #features)

Quality of

software and paper

Similarity

between runs

AccuracyMethod Scalability Stability Usabilitya) b) c) d) e)

Topology

Branch assignment

Cell p
ositio

ns

Features

Gold
Silve

r
Dyngen

Dyntoy

PROSSTT

Splatte
r

Cycle
Linear

Bifu
rcatio

n

Conve
rgence

Multifu
rcatio

n

Tree
Acyclic

Connected

Disconnected

1m × 100

100k × 1k

10k × 10k

1k × 100k

100 × 1m

Cor. p
red. v

s. re
al

Topology

Branch assignment

Cell p
ositio

ns

Features

Availability

Behaviour

Code assurance

Code quality

Documentatio
n

Paper

Score

0 0.2 0.4 0.6 0.8 1

Not shown, insufficient data points

CALISTA

cellTree Gibbs

GrandPrix

MERLoT

ouija

pseudogp

SCIMITAR

SCOUP

Figure 3.4: Detailed results of the four main evaluation criteria: accuracy, scalability, stability
and usability. a, The names of the methods, ordered as in Figure 3.3. b, Accuracy of trajectory
inference methods across metrics, dataset sources and dataset trajectory types. The performance
of a method is generally more stable across dataset sources, but very variable depending on the
metric and trajectory type. c, Predicted execution times for varying numbers of cells and features
(no. of cells × no. of features). Predictions were made by training a regression model after
running each method on bootstrapped datasets with varying numbers of cells and features. k,
thousands; m, millions; cor, correlation. d, Stability results by calculating the average pairwise
similarity between models inferred across multiple runs of the same method. e, Usability scores
of the tool and corresponding manuscript, grouped per category. Off-the-shelf methods were
directly implemented in R and thus do not have a usability score.

which often explore the very thin line
between ingenuity and complete insanity.

Page 61

dynbenchmark: A comparison of single-cell trajectory inference methods.

3

shot and SCORPIUS, performing well across the board (Figure 3.3b). We will discuss

each evaluation criterion in more detail (Figure 3.4 and Supplementary Figure 3.1), af-

ter which we conclude with guidelines for method users and future perspectives for

method developers.

3.2.2 Accuracy

We defined several metrics to compare a prediction to a reference trajectory (Sec-

tion 3.6). Based on an analysis of their robustness and conformity to a set of rules

(Section 3.6), we chose four metrics each assessing a different aspect of a trajectory

(Figure 3.1d): the topology (Hamming–Ipsen–Mikhailov, HIM), the quality of the as-

signment of cells to branches (F1branches), the cell positions (cordist) and the accu-

racy of the differentially expressed features along the trajectory (wcorfeatures). The

data compendium consisted of both synthetic datasets, which offer the most exact

reference trajectory, and real datasets, which provide the highest biological relevance.

These real datasets come from a variety of single-cell technologies, organisms and dy-

namic processes, and contain several types of trajectory topologies (Supplementary

Table 3.2). Real datasets were classified as ‘gold standard’ if the reference trajectory

was not extracted from the expression data itself, such as via cellular sorting or cell

mixing [33]. All other real datasets were classified as ‘silver standard’. For synthetic

datasets we used several data simulators, including a simulator of gene regulatory net-

works using a thermodynamic model of gene regulation [34]. For each simulation, we

used a real dataset as a reference, to match its dimensions, number of differentially

expressed genes, drop-out rates and other statistical properties [35].

We found that method performance was very variable across datasets, indicating

that there is no ‘one-size-fits-all’ method that works well on every dataset (Figure

3.5a). Even methods that can detect most of the trajectory types, such as PAGA,

RaceID/StemID and SLICER were not the best methods across all trajectory types

(Figure 3.4b). The overall score between the different dataset sources was moderately

to highly correlated (Spearman rank correlation between 0.5–0.9) with the scores on

real datasets containing a gold standard (Figure 3.5b), confirming both the accuracy

of the gold standard trajectories and the relevance of the synthetic data. On the

other hand, the different metrics frequently disagreed with each other, with Monocle

and PAGA Tree scoring better on the topology scores, whereas other methods, such

as Slingshot, were better at ordering the cells and placing them into the correct

branches (Figure 3.4b).

The performance of a method was strongly dependent on the type of trajectory

present in the data (Figure 3.4b). Slingshot typically performed better on datasets

containing more simple topologies, while PAGA, pCreode and RaceID/StemID had

Page 62 Jo, sorry for spilling coffee on your shoes on my first day in Blok B.
My strategy seemed to have worked, for suddenly I had a fourth promotor!

3

dynbenchmark: A comparison of single-cell trajectory inference methods.

higher scores on datasets with trees or more complex trajectories (Figure 3.5c).

This was reflected in the types of topologies detected by every method, as those

predicted by Slingshot tended to contain less branches, whereas those detected by

PAGA, pCreode and Monocle DDRTree gravitated towards more complex topologies

(Figure 3.5d). This analysis therefore indicates that detecting the right topology is still

a difficult task for most of these methods, because methods tend to be either too

optimistic or too pessimistic regarding the complexity of the topology in the data.

The high variability between datasets, together with the diversity in detected topolo-

gies between methods, could indicate some complementarity between the different

methods. To test this, we calculated the likelihood of obtaining a top model when

using only a subset of all methods. A top model in this case was defined as a model

with an overall score of at least 95% as the best model. On all datasets, using one

method resulted in getting a top model about 27% of the time. This increased up to

74% with the addition of six other methods (Figure 3.6a). The result was a relatively

diverse set of methods, containing both strictly linear or cyclic methods, andmethods

with a broad trajectory type range such as PAGA. We found similar indications of com-

plementarity between the top methods on data containing only linear, bifurcation or

multifurcating trajectories (Figure 3.6b), although in these cases less methods were

necessary to obtain at least one top model for a given dataset. Altogether, this shows

that there is considerable complementarity between the different methods and that

users should try out a diverse set of methods on their data, especially when the topol-

ogy is unclear a priori. Moreover, it also opens up the possibilities for new ensemble

methods that utilize this complementarity.

3.2.3 Scalability

While early TI methods were developed at a time where profiling more than a thou-

sand cells was exceptional, methods now have to cope with hundreds of thousands

of cells, and perhaps soon with more than tenmillion [36]. Moreover, the recent appli-

cation of TI methods on multi-omics single-cell data also showcases the increasing

demands on the number of features [37]. To assess the scalability, we ran eachmethod

on up- and downscaled versions of five distinct real datasets. We modeled the run-

ning time and memory usage using a Shape Constrained Additive Model [38] (Figure

3.7a). As a control, we compared the predicted time (and memory) with the actual

time (respectively memory) on all benchmarking datasets, and found that these were

highly correlated overall (Spearman rank correlation >0.9, Figure 3.8, and moderately

to highly correlated (Spearman rank correlation of 0.5–0.9) for almost every method,

depending to what extent the execution of a method succeeded during the scalability

experiments (Figure 3.4c and Supplementary Figure 3.1a).

I thoroughly enjoyed my time as an unofficial member of your group.
You are a true people’s person; you bring out the best in everybody.

Page 63

dynbenchmark: A comparison of single-cell trajectory inference methods.

3

We found that the scalability of most methods was overall very poor, with most graph

and treemethods not finishingwithin an hour on a dataset with ten thousand cells and

ten thousand features (Figure 3.4c), which is around the size of a typical droplet-based

single-cell dataset [36]. Running times increased further with increasing number of

cells, with only a handful of graph/tree methods completing within a day on a million

cells (PAGA, PAGA Tree, Monocle DDRTree, Stemnet and GrandPrix). Some methods,

such as Monocle DDRTree and GrandPrix, also suffered from unsatisfactory running

times when given a high number of features.

Methods with a low running time typically had two defining aspects: they had a linear

time complexity with respect to the features and/or cells, and adding new cells or

features led to a relatively low increase in time (Figure 3.7b). We found that more than

half of all methods had a quadratic or superquadratic complexity with respect to the

number of cells, which would make it difficult to apply any of these methods in a

reasonable time frame on datasets with more than a thousand cells (Figure 3.7b).

We also assessed the memory requirements of each method (Supplementary Fig-

ure 3.1c). Most methods had reasonable memory requirements for modern worksta-

tions or computer clusters (≤12 GB) with PAGA and STEMNET in particular having a

lowmemory usage with both a high number of cells or a high number of features. No-

tably, the memory requirements were very high for several methods on datasets with

high numbers of cells (RaceID/StemID, pCreode and MATCHER) or features (Monocle

DDRTree, SLICE and MFA).

Altogether, the scalability analysis indicated that the dimensions of the data are an

important factor in the choice of method, and that method development should pay

more attention to maintaining reasonable running times and memory usage.

3.2.4 Stability

It is not only important that amethod is able to infer an accuratemodel in a reasonable

time frame, but also that it produces a similar model when given very similar input

data. To test the stability of each method, we executed each method on ten different

subsamples of the datasets (95% of the cells, 95% of the features), and calculated the

average similarity between each pair of models using the same scores used to assess

the accuracy of a trajectory (Figure 3.4d).

Given that the trajectories of methods that fix the topology either algorithmically or

through a parameter are already very constrained, it is to be expected that such meth-

ods tend to generate very stable results. Nonetheless, some fixed topology methods

still produced slightly more stable results, such as SCORPIUS and MATCHER for lin-

ear methods and MFA for multifurcating methods. Stability was much more diverse

Page 64 Joeri, you brought me into this whole adventure
with your incredible friendliness and that darned oversized pumpkin;

3

dynbenchmark: A comparison of single-cell trajectory inference methods.

among methods with a free topology. Slingshot produced more stable models than

PAGA (Tree), which in turn produced more stable results than pCreode and Monocle

DDRTree.

3.2.5 Usability

While not directly related to the accuracy of the inferred trajectory, it is also important

to assess the quality of the implementation and how user-friendly it is for a biological

user [39]. We scored eachmethod using a transparent checklist of important scientific

and software development practices, including software packaging, documentation,

automated code testing and publication into a peer-reviewed journal (Table 3.1). It is

important to note that there is a selection bias in the tools chosen for this analysis,

as we did not include a substantial set of tools due to issues with installation, code

availability and executability on a freely available platform (which excludes MATLAB).

The reasons for not including certain tools are all discussed on our repository (https://

github.com/dynverse/dynmethods/issues?q=label:unwrappable). Installation issues

seem to be quite general in bioinformatics [40] and the trajectory inference field is no

exception.

We found that most methods fulfilled the basic criteria, such as the availability of a

tutorial and elemental code quality criteria (Figure 3.4d and Figure 3.9). While recent

methods had a slightly better quality score than oldermethods, several quality aspects

were consistently lacking for the majority of the methods (Figure 3.9 right) and we

believe that these should receive extra attention from developers. Although these

outstanding issues covered all five categories, code assurance and documentation in

particular were problematic areas, notwithstanding several studies pinpointing these

as good practices [41, 42]. Only two methods had a nearly perfect usability score

(Slingshot and Celltrails), and these could be used as an inspiration for future methods.

We observed no clear relation between usability and method accuracy or usability

(Figure 3.3b).

3.3 Discussion

In this study, we presented a large-scale evaluation of the performance of 45 TI meth-

ods. By using a common trajectory representation and four metrics to compare the

methods’ outputs, we were able to assess the accuracy of the methods on more than

200 datasets. We also assessed several other important quality measures, such as the

quality of the method’s implementation, the scalability to hundreds of thousands of

cells and the stability of the output on small variations of the datasets.

and now, with you as my jury member, you helped me finish my PhD adventure.
We’ve truly come full circle.

Page 65

https://github.com/dynverse/dynmethods/issues?q=label:unwrappable
https://github.com/dynverse/dynmethods/issues?q=label:unwrappable

dynbenchmark: A comparison of single-cell trajectory inference methods.

3

Table 3.1: Scoring sheet for assessing usability of trajectory inference methods. Each quality
aspect was given a weight based on how many times it was mentioned in a set of articles discussing
best practices for tool development. Part 1.

Aspect Items References

Availability
Open source (1) Method’s code is freely available (2) The code can be run on a freely

available platform
[43, 41, 39,
44, 42, 45,
46]

Version control The code is available on a public version controlled repository, such as
Github

[43, 41, 39,
44, 42, 45]

Packaging (1) The code is provided as a ”package”, exposing functionality through
functions or shell commands (2) The code can be easily installed through
a repository such as CRAN, Bioconductor, PyPI, CPAN, debian packages,
…

[43, 44, 46,
45]

Dependencies (1) Dependencies are clearly stated in the tutorial or in the code (2) De-
pendencies are automatically installed

[39, 44, 42,
47]

License (1) The code is licensed (2) License allows academic use [43, 39, 44,
42, 45, 46]

Interface (1) The tool can be run using a graphical user interface, either locally or
on a web server (2) The tool can be run through the command line or
through a programming language

[45]

Code quality
Function and object
naming

(1) Functions/commands have well chosen names (2) Argu-
ments/parameters have well chosen names

[41, 44]

Code style (1) Code has a consistent style (2) Code follows (basic) good practices in
the programming language of choice, for example PEP8 or the tidyverse
style guide

[41, 44, 42]

Code duplication Duplicated code is minimal [41, 44]
Self-contained func-
tions

The method is exposed to the user as self-contained functions or com-
mands

[48, 39, 45]

Plotting Plotting functions are provided for the final and/or intermediate results
Dummy proofing Package contains dummy proofing, i.e. testing whether the parameters

and data supplied by the user make sense and are useful
[43, 47]

Code assurance
Unit testing Method is tested using unit tests [43, 41, 48,

44, 45]
Unit testing Tests are run automatically using functionality from the programming

language
[43, 41, 48,
44, 45]

Continuous integra-
tion

The method uses continuous integration, for example on Travis CI [49, 44, 42,
45]

Code coverage (1) The code coverage of the repository is assessed. (2) What is the per-
centage of code coverage

Based on the results of our benchmark, we propose a set of practical guidelines for

method users (Figure 3.10 and https://guidelines.dynverse.org). We postulate that, as

a method’s performance is heavily dependent on the trajectory type being studied,

the choice of method should currently be primarily driven by the anticipated trajec-

tory topology in the data. For most use cases, the user will know very little about the

expected trajectory, except perhaps whether the data is expected to contain multi-

ple disconnected trajectories, cycles or a complex tree structure. In each of these

use cases, our evaluation suggests a different set of optimal methods, as shown in

Figure 3.10. Several other factors will also impact the choice of methods, such as

the dimensions of the dataset and the prior information that is available. These fac-

tors and several others can all be dynamically explored in our interactive application

Page 66 Go to the next chapter for more acknowledgements.

https://guidelines.dynverse.org

3

dynbenchmark: A comparison of single-cell trajectory inference methods.

Table 3.2: Scoring sheet for assessing usability of trajectory inference methods. Part 2.

Aspect Items References

Documentation
Support (1) There is a support ticket system, for example onGithub (2) The authors

respond to tickets and issues are resolvedwithin a reasonable time frame
[41, 44, 42,
45, 46]

Development model (1) The repository separates the development code from master code,
for example using git master en developer branches (2) The repository
has created releases, or several branches corresponding to major re-
leases. (3) The repository has branches for the development of separate
features.

[50]

Tutorial (1) A tutorial or vignette is available (2) The tutorial has example results (3)
The tutorial has real example data (4) The tutorial showcases themethod
on several datasets (1=0, 2=0.5, >2=1)

[44, 45, 46,
47, 51]

Function documenta-
tion

(1) The purpose and usage of functions/commands is documented (2)
The parameters of functions/commands are documented (3) The output
of functions/commands is documented

[41, 39, 44,
45, 47]

Inline documentation Inline documentation is present in the code [41, 39, 44,
45, 47]

Parameter trans-
parency

All important parameters are exposed to the user [39]

Behaviour
Seed setting The method does not artificially become deterministic (1), for example

by setting some (0.5) or a lot (0) of seeds
[52]

Unexpected output (1) No unexpected output messages are generated by the method (2)
No unexpected files, folders or plots are generated (3) No unexpected
warnings during runtime or compilation are generated

[42]

Trajectory format The postprocessing necessary to extract the relevant output from the
method is minimal (1), moderate (0.5) or extensive (0)

Prior information Prior information is required (0), optional (1) or not required (1)

Paper
Publishing The method is published
Peer review The paper is published in a peer-reviewed journal [47, 53, 54]
Evaluation on real data (1) The paper shows the method’s usefulness on several (1), one (0.25)

or no real datasets. (2) The paper quantifies the accuracy of the method
given a gold or silver standard trajectory

[55, 56]

Evaluation of robust-
ness

The paper assessed method robustness (to eg. noise, subsampling, pa-
rameter changes, stability) in one (0.5) or several (1) ways

[47, 55, 51,
56]

(https://guidelines.dynverse.org). This application can also be used to query the re-

sults of this evaluation, such as filtering the datasets or changing the importance of

the evaluation metrics for the final ranking.

When inferring a trajectory on a dataset of interest, it is important to take two further

points into account. First, it is critical that a trajectory, and the downstream results

and/or hypotheses originating from it, are confirmed by multiple TI methods. This is

to make sure that the prediction is not biased due to the given parameter setting or

the particular algorithm underlying a TI method. The value of using different methods

is further supported by our analysis indicating substantial complementarity between

the different methods. Second, even if the expected topology is known, it can be

beneficial to also try out methods that make less assumptions about the trajectory

topology. When the expected topology is confirmed using such a method, it provides

additional evidence to the user. When a more complex topology is produced, this

could indicate that the underlying biology is much more complex than anticipated by

Page 67

https://guidelines.dynverse.org

dynbenchmark: A comparison of single-cell trajectory inference methods.

3

the user.

Critical to the broad applicability of TI methods is the standardization of the input and

output interfaces of TI methods, so that users can effortlessly execute TI methods

on their dataset of interest, compare different predicted trajectories and apply down-

stream analyses, such as finding genes important for the trajectory, network inference

[11] or finding modules of genes [57]. Our framework is an initial attempt at tackling

this problem, and we illustrate its usefulness here by comparing the predicted trajec-

tories of several top-performing methods on datasets containing a linear, tree, cyclic

and disconnected graph topology (Figure 3.11). Using our framework, this figure can

be recreated using only a couple of lines of R code (https://methods.dynverse.org).

In the future, this framework could be extended to allow additional input data, such

as spatial and RNA velocity information [58], and easier downstream analyses. In addi-

tion, further discussion within the field is required to arrive at a consensus concerning

a common interface for trajectory models, which can include additional features such

as uncertainty and gene importance.

Our study indicates that the field of trajectory inference is maturing, primarily for lin-

ear and bifurcating trajectories (Figure 3.11a,b). However, we also highlight several

ongoing challenges, which should be addressed before TI can be a reliable tool for

analyzing single-cell omics datasets with complex trajectories. Foremost, new meth-

ods should focus on improving the unbiased inference of tree, cyclic graph and dis-

connected topologies, as we found that methods repeatedly overestimate or under-

estimate the complexity of the underlying topology, even if the trajectory could easily

be identified using a dimensionality reduction method (Figure 3.11c,d). Furthermore,

higher standards for code assurance and documentation could help in adopting these

tools across the single-cell omics field. Finally, new tools should be designed to scale

well with the increasing number of cells and features. We found that only a handful of

current methods can handle datasets with more than 10,000 cells within a reasonable

time frame. To support the development of these new tools, we provide a series of

vignettes on how to wrap and evaluate a method on the different measures proposed

in this study at https://benchmark.dynverse.org.

We found that the performance of a method can be very variable between datasets,

and therefore included a large set of both real and synthetic data within our evalua-

tion, leading to a robust overall ranking of the different methods. However, ‘good-

yet-not-the-best’ methods [59] can still provide a very valuable contribution to the

field, especially if they make use of novel algorithms, return a more scalable solution

or provide a unique insight in specific use cases. This is also supported by our analysis

of method complementarity. Some examples for the latter include PhenoPath, which

can include additional covariates in its model, ouija, which returns a measure of un-

Page 68

https://methods.dynverse.org
https://benchmark.dynverse.org

3

dynbenchmark: A comparison of single-cell trajectory inference methods.

certainty of each cell’s position within the trajectory, and StemID, which can infer the

directionality of edges within the trajectory.

3.4 Methods

3.4.1 Trajectory inference methods

We gathered a list of 71 trajectory inference tools (Supplementary Table 3.1) by

searching the literature for ‘trajectory inference’ and ‘pseudotemporal ordering’,

and based on two existing lists found online: awesome-single-cell [17] and single-

cell-pseudotime [60]. We welcome any contributions by creating an issue at

https://methods.dynverse.org.

Methods were excluded from the evaluation based on several criteria: (1) not freely

available; (2) no code available; (3) superseded by another method; (4) requires data

types other than expression; (5) no programming interface; (6) unresolved errors dur-

ingwrapping; (7) too slow (requiresmore than 1 h on a 100× 100 dataset); (8) does not

return an ordering; and (9) requires additional user input during the algorithm (other

than prior information). The discussions on why these methods were excluded can

be found at https://github.com/dynverse/dynmethods/issues?q=label:unwrappable.

In the end, we included 45 methods in the evaluation.

3.4.2 Method wrappers

To make it easy to run each method in a reproducible manner, each method was

wrapped within Docker and Singularity containers (available at https://methods.

dynverse.org). These containers are automatically built and tested using Travis

continuous integration (https://travis-ci.org/dynverse) and can be ran using both

Docker and Singularity. For each method, we wrote a wrapper script based on

example scripts or tutorials provided by the authors (as mentioned in the respective

wrapper scripts). This script reads in the input data, runs the method and outputs

the files required to construct a trajectory. We also created a script to generate an

example dataset, which is used for automated testing.

We used the GitHub issues system to contact the authors of each method, and asked

for feedback on the wrappers, the metadata and the usability scores. About one-

third of the authors responded and we improved the wrappers based on their feed-

back. These discussions can be viewed on GitHub: https://github.com/dynverse/

dynmethods/issues?q=label:method_discussion

Page 69

https://github.com/seandavi/awesome-single-cell
https://github.com/agitter/single-cell-pseudotime
https://github.com/agitter/single-cell-pseudotime
https://methods.dynverse.org
https://github.com/dynverse/dynmethods/issues?q=label:unwrappable
https://methods.dynverse.org
https://methods.dynverse.org
https://travis-ci.org/dynverse
https://github.com/dynverse/dynmethods/issues?q=label:method_discussion
https://github.com/dynverse/dynmethods/issues?q=label:method_discussion

dynbenchmark: A comparison of single-cell trajectory inference methods.

3

Method input

As input, we provided eachmethod with either the raw count data (after cell and gene

filtering) or normalized expression values, based on the description in themethod doc-

umentation or from the study describing the method. A large portion of the methods

requires some form of prior information (for example, a start cell) to be executable.

Other methods optionally allow the exploitation of certain prior information. Prior

information can be supplied as a starting cell from which the trajectory will originate,

a set of important marker genes or even a grouping of cells into cell states. Providing

prior information to a TI method can be both a blessing and a curse. In one way, prior

information can help the method to find the correct trajectory among many, equally

likely, alternatives. On the other hand, incorrect or noisy prior information can bias

the trajectory towards current knowledge. Moreover, prior information is not always

easily available, and its subjectivity can therefore lead to multiple equally plausible

solutions, restricting the applicability of such TI methods to well-studied systems.

The prior information was extracted from the reference trajectory as follows:

• Start cells: the identity of one or more start cells. For both real and synthetic

data, a cell was chosen that was the closest (in geodesic distance) to each mile-

stone with only outgoing edges. For ties, one random cell was chosen. For

cyclic datasets, a random cell was chosen.

• End cells: the identity of one or more end cells. This is similar to the start cells,

but now for every state with only incoming edges.

• No. of end states: number of terminal states, i.e., the number of milestones with

only incoming edges.

• Grouping: for each cell a label showing which state/cluster/branch it belongs

to. For real data, the states were from the gold/silver standard. For synthetic

data, each milestone was seen as one group and cells were assigned to their

closest milestone.

• No. of branches: number of branches/intermediate states. For real data, this

was the number of states in the gold/silver standard. For synthetic data, this was

the number of milestones.

• Discrete time course: for each cell a time point from which it was sampled. If

available, this was directly extracted from the reference trajectory; otherwise

the geodesic distance from the root milestone was used. For synthetic data, the

simulation time was uniformly discretised into four timepoints.

• Continuous time course: for each cell a time point from which it was sampled.

For real data, this was equal to the discrete time course. For synthetic data, we

Page 70

3

dynbenchmark: A comparison of single-cell trajectory inference methods.

used the internal simulation time of each simulator.

Common trajectory model

Due to the absence of a common format for trajectory models, most methods return

a unique set of output formats with few overlaps. We therefore post-processed the

output of each method into a common probabilistic trajectory model (Figure 3.2a).

This model consisted of three parts. (1) The milestone network represents the overall

network topology, and contains edges between different milestones and the length

of the edge between them. (2) The milestone percentages contain, for each cell,

its position between milestones and sums for each cell to one. (3) The regions of

delayed commitment define connections between three or more milestones. These

must be explicitly defined in the trajectory model and per region one milestone must

be directly connected to all other milestones of the region.

Depending on the output of a method, we used different strategies to convert the

output to our model (Figure 3.2b). Special conversions are denoted by an asterisk (*)

and will be explained in more detail in the second list below.

• Type 1, direct: CALISTA*, DPT*, ElPiGraph, ElPiGraph cycle, ElPiGraph linear,

MERLoT, PAGA, SLICE*, Slingshot, URD* and Wishbone. The wrapped method

directly returned a network of milestones, the regions of delayed commitment

and for each cell it is given to what extent it belongs to a milestone. In some

cases, this indicates that additional transformations were required for the

method, not covered by any of the following output formats. Some methods

returned a branch network instead of a milestone network and this network

was converted by calculating the line graph of the branch network.

• Type 2, linear pseudotime: Component 1, Embeddr, FORKS, MATCHER, ouija,

ouijaflow, PhenoPath, pseudogp, SCIMITAR, SCORPIUS, topslam, TSCAN, Wan-

derlust and Waterfall. The method returned a pseudotime, which is translated

into a linear trajectory where the milestone network contains two milestones

and cells are positioned between these two milestones.

• Type 3, cyclical pseudotime: Angle and reCAT. The method returned a pseudo-

time, which is translated into a cyclical trajectory where the milestone network

contains three milestones and cells are positioned between these three mile-

stones. These milestones were positioned at pseudotime 0, 1/3 and 2/3.

• Type 4, end state probability: FateID, GPfates, GrandPrix, MFA*, SCOUP and

STEMNET. The method returned a pseudotime and for each cell and end state

a probability (Pr) for how likely a cell will end up in a certain end state. This was

translated into a star-shaped milestone network, with one starting milestone

Page 71

dynbenchmark: A comparison of single-cell trajectory inference methods.

3

(M0) and several outer milestones (Mi), with regions of delayed commitment

between all milestones. The milestone percentage of a cell to one of the outer

milestones was equal to pseudotime×PrMi. The milestone percentage to the

starting milestone was equal to 1 − pseudotime.

• Type 5, cluster assignment: Mpath and SCUBA. The method returned a mile-

stone network and an assignment of each cell to a specificmilestone. Cells were

positioned onto the milestones they are assigned to, with milestone percentage

equal to 1.

• Type 6, orthogonal projection: MST, pCreode and RaceID/StemID. The

method returned a milestone network, and a dimensionality reduction of the

cells and milestones. The cells were projected to the closest nearest segment,

thus determining the cells’ position along the milestone network. If a method

also returned a cluster assignment (type 5), we limited the projection of each

cell to the closest edge connecting to the milestone of a cell. For these

methods, we usually wrote two wrappers, one which included the projection

and one without.

• Type 7, cell graph: CellRouter, CellTrails, cellTree Gibbs, cellTree maptpx, cell-

Tree VEM, Monocle DDRTree, Monocle ICA, Sincell* and SLICER. The method

returned a network of cells and which cell–cell transitions were part of the

‘backbone’ structure. Backbone cells with degree ̸= 2 were regarded as mile-

stones and all other cells were placed on transitions between the milestones. If

a method did not return a distance between pairs of cells, the cells were uni-

formly positioned between the two milestones. Otherwise, we first calculated

the distance between two milestones as the sum of the distances between the

cells and then divided the distance of each pair of cells with the total distance

to get the milestone percentages.

Special conversions were necessary for certain methods:

• CALISTA: We assigned the cells to the branch at which the sum of the cluster

probabilities of two connected milestones was the highest. The cluster proba-

bilities of the two selected milestones were then used as milestone percentages.

This was then processed as a type 1, direct, method.

• DPT: We projected the cells onto the cluster network, consisting of a central

milestone (this cluster contained the cells that were assigned to the ‘unknown’

branch) and three terminal milestones, each corresponding to a tip point. This

was then processed as a type 1, direct, method.

• Sincell: To constrain the number of milestones this method creates, wemerged

two cell clusters iteratively until the percentage of leaf nodeswas below a certain

Page 72

3

dynbenchmark: A comparison of single-cell trajectory inference methods.

cutoff, with the default cutoff set to 25%. This was then processed as a type 7,

cell graph, method.

• SLICE: As discussed in the vignette of SLICE (https://research.cchmc.org/pbge/

slice.html), we ran principal curves one by one for every edge detected by SLICE.

This was then processed as a type 1, direct, method.

• MFA: We used the branch assignment as state probabilities, which together

with the global pseudotime were processed as a type 4, end state probabilities,

method.

• URD: We extracted the pseudotime of a cell within each branch using the y

positions in the tree layout. This was then further processed as a type 1, direct,

method.

More information on how each method was wrapped can be found within the com-

ments of each wrapper script, listed at https://methods.dynverse.org.

Off-the-shelf methods

For baseline performance, we added several ‘off-the-shelf’ TI methods that can be

run using a few lines of code in R.

• Component 1: This method returns the first component of a principal compo-

nent analysis (PCA) dimensionality reduction as a linear trajectory. This method

is especially relevant as it has been used in a few studies already [61, 62].

• Angle: Similar to the previous method, this method computes the angle with

respect to the origin in a two-dimensional PCA and uses this angle as a pseudo-

time for generating a cyclical trajectory.

• MST: This method performs PCA dimensionality reduction, followed by cluster-

ing using the R mclust package, after which the clusters are connected using

a minimum spanning tree. The trees are orthogonally projected to the nearest

segment of the tree. This baseline is highly relevant as manymethods follow the

same methodology: dimensionality reduction, clustering, topology inference

and project cells to topology.

3.4.3 Trajectory types

We classified all possible trajectory topologies into distinct trajectory types, based on

topological criteria (Figure 3.1c). These trajectory types start from the most general

trajectory type, a disconnected graph, andmove down (within a directed acyclic graph

Page 73

https://research.cchmc.org/pbge/slice.html
https://research.cchmc.org/pbge/slice.html
https://methods.dynverse.org

dynbenchmark: A comparison of single-cell trajectory inference methods.

3

structure), progressively becoming more simple until the two basic types are reached:

linear and cyclical. A disconnected graph is a graph in which only one edge can exist

between two nodes. A (connected) graph is a disconnected graph in which all nodes

are connected. An acyclic graph is a graph containing no cycles. A tree is an acyclic

graph containing no convergences (no nodes with in-degree higher than 1). A conver-

gence is an acyclic graph in which only one node has a degree larger than 1 and this

same node has an in-degree of 1. A multifurcation is a tree in which only one node

has a degree larger than 1. A bifurcation is a multifurcation in which only one node

has a degree equal to 3. A linear topology is a graph in which no node has a degree

larger than 3. Finally, a cycle is a connected graph in which every node has a degree

equal to 2. In most cases, a method that was able to detect a complex trajectory type

was also able to detect less complex trajectory types, with some exceptions shown in

Figure 3.3a.

For simplicity, we merged the bifurcation and convergence trajectory type, and the

acyclic graph and connected graph trajectory type in the main figures of the paper.

3.4.4 Real datasets

We gathered real datasets by searching for ‘single-cell’ at the Gene Expression Om-

nibus and selecting those datasets in which the cells are sampled from different stages

in a dynamic process (Supplementary Table 3.2). The scripts to download and process

these datasets are available on our repository (https://benchmark.dynverse.org/tree/

master/scripts/01-datasets). Whenever possible, we preferred to start from the raw

counts data. These raw counts were all normalized and filtered using a common

pipeline, as discussed later. Some original datasets contained more than one trajec-

tory, in which case we split the dataset into its separate connected trajectory, but also

generated several combinations of connected trajectories to include some datasets

with disconnected trajectories in the evaluation. In the end, we included 110 datasets

for this evaluation.

For each dataset, we extracted a reference trajectory, consisting of two parts: the

cellular grouping (milestones) and the connections between these groups (milestone

network). The cellular grouping was provided by the authors of the original study,

and we classified it as a gold standard when it was created independently from the

expression matrix (such as from cell sorting, the origin of the sample, the time it was

sampled or cellular mixing) or as a silver standard otherwise (usually by clustering

the expression values). To connect these cell groups, we used the original study to

determine the network that the authors validated or otherwise found to be the most

likely. In the end, each group of cells was placed on a milestone, having a percentage

of 1 for that particularmilestone. The known connections between these groupswere

Page 74

https://benchmark.dynverse.org/tree/master/scripts/01-datasets
https://benchmark.dynverse.org/tree/master/scripts/01-datasets

3

dynbenchmark: A comparison of single-cell trajectory inference methods.

used to construct the milestone network. If there was biological or experimental time

data available, we used this as the length of the edge; otherwise we set all the lengths

equal to one.

3.4.5 Synthetic datasets

To generate synthetic datasets, we used four different synthetic data simulators:

• dyngen: simulations of gene regulatory networks, available at https://github.

com/dynverse/dyngen

• dyntoy: random gradients of expression in the reduced space, available at https:

//github.com/dynverse/dyntoy

• PROSSTT: expression is sampled from a linear model that depends on pseudo-

time [63]

• Splatter: simulations of non-linear paths between different expression states

[35]

For every simulator, we took great care to make the datasets as realistic as possible.

To do this, we extracted several parameters from all real datasets. We calculated the

number of differentially expressed features within a trajectory using a two-wayMann–

WhitneyU test between every pair of cell groups. These valueswere corrected formul-

tiple testing using the Benjamini-Hochberg procedure (FDR < 0.05) and we required

that a gene was expressed in at least 5% of cells, and had at least a fold-change of 2.

We also calculated several other parameters, such as drop-out rates and library sizes

using the Splatter package [35]. These parameters were then given to the simulators

when applicable, as described for each simulator below. Not every real dataset was

selected to serve as a reference for a synthetic dataset. Instead, we chose a set of ten

distinct reference real datasets by clustering all the parameters of each real dataset,

and used the reference real datasets at the cluster centers from a pam clustering (with

k = 10, implemented in the R cluster package) to generate synthetic data.

dyngen

The dyngen (Chapter 2) workflow to generate synthetic data is based on the well es-

tablished workflow used in the evaluation of network inference methods [34, 64] and

consists of four main steps: network generation, simulation, gold standard extraction

and simulation of the scRNA-seq experiment. At every step, we tried tomirror real reg-

ulatory networks, while keeping the model simple and easily extendible We simulated

a total of 110 datasets, with 11 different topologies.

Page 75

https://github.com/dynverse/dyngen
https://github.com/dynverse/dyngen
https://github.com/dynverse/dyntoy
https://github.com/dynverse/dyntoy

dynbenchmark: A comparison of single-cell trajectory inference methods.

3

dyntoy

For more simplistic data generation (”toy” datasets), we created the dyntoy workflow

(https://github.com/dynverse/dyntoy). We created 12 topology generators (described

below), and with 10 datasets per generator, this lead to a total of 120 datasets.

We created a set of topology generators, were B(n, p) denotes a binomial distribution,

and U(a, b) denotes a uniform distribution:

• Linear and cyclic, with number of milestones ∼ B(10, 0.25)

• Bifurcating and converging, with four milestones

• Binary tree, with number of branching points ∼ U(3, 6)

• Tree, with number of branching points ∼ U(3, 6) and maximal degree ∼ U(3, 6)

For more complex topologies we first calculated a random number of ”modifications”

∼ U(3, 6) and a degmax ∼ B(10, 0.25) + 1. For each type of topology, we defined what

kind of modifications are possible: divergences, loops, convergences and divergence-

convergence. We then iteratively constructed the topology by uniformly sampling

from the set of possible modifications, and adding this modification to the existing

topology. For a divergence, we connected an existingmilestone to a number of a new

milestones. Conversely, for a convergence we connected a number of new nodes to

an existing node. For a loop, we connected two existing milestones with a number of

milestones in between. Finally for a divergence-convergence we connected an exist-

ing milestone to several new milestones which again converged on a new milestone.

The number of nodes was sampled from ∼ B(degmax − 3, 0.25) + 2

• Looping, allowed loop modifications

• Diverging-converging, allowed divergence and converging modifications

• Diverging with loops, allowed divergence and loop modifications

• Multiple looping, allowed looping modifications

• Connected, allowed looping, divergence and convergence modifications

• Disconnected, number of components sampled from ∼ B(5, 0.25) + 2, for each
component we randomly chose a topology from the ones listed above

After generating the topology, we sampled the length of each edge ∼ U(0.5, 1). We

added regions of delayed commitment to a divergence in a random half of the cases.

We then placed the number of cells (same number as from the reference real dataset),

on this topology uniformly, based on the length of the edges in themilestone network.

Page 76

https://github.com/dynverse/dyntoy

3

dynbenchmark: A comparison of single-cell trajectory inference methods.

For each gene (same number as from the reference real dataset), we calculated the

Kamada-Kawai layout in 2 dimensions, with edge weight equal to the length of the

edge. For this gene, we then extracted for each cell a density value using a bivariate

normal distribution with µ ∼ U(xmin, xmin) and σ ∼ U(xmin/10, xmin/8). We used this

density as input for a zero-inflated negative binomial distribution with µ U(100, 1000)×
density, k U(µ/10, µ/4) and pi from the parameters of the reference real dataset, to

get the final count values.

This countmatrix was then filtered and normalised using the pipeline described below.

PROSSTT

PROSSTT is a recent data simulator [63], which simulates expression using linear mix-

tures of expression programs and random walks through the trajectory. We used 5

topology generators from dyntoy (linear, bifurcating, multifurcating, binary tree and

tree), and simulated for each topology generator 10 datasets using different reference

real datasets. However, due to frequent crashes of the tool, only 19 datasets created

output and were thus used in the evaluation.

Using the simulate_lineage function, we simulated the lineage expression, with pa-

rameters a ∼ U(0.01, 0.1), branch-tolintra ∼ U(0, 0.9) and branch-tolinter ∼ U(0, 0.9).
These parameter distributions were chosen very broad so as to make sure both easy

and difficult datasets are simulated. After simulating base gene expression with simu-

late_base_gene_exp, we used the sample_density function to finally simulate expres-

sion values of a number of cells (the same as from the reference real dataset), with

α ∼ Lognormal (µ = 0.3 and σ = 1.5) and β ∼ Lognormal (µ = 2 and σ = 1.5). Each
of these parameters were centred around the default values of PROSSTT, but with

enough variability to ensure a varied set of datasets.

This countmatrix was then filtered and normalised using the pipeline described below.

Splatter

Splatter [35] simulates expression values by constructing non-linear paths between

different states, each having a distinct expression profile. We used 5 topology gener-

ators from dyntoy (linear, bifurcating, multifurcating, binary tree and tree), and simu-

lated for each topology generator 10 datasets using different reference real datasets,

leading to a total of 50 datasets.

We used the splatSimulatePaths function from Splatter to simulate datasets, with num-

ber of cells and genes equal to those in the reference real dataset, andwith parameters

nonlinearProb, sigmaFac and skew all sampled from U(0, 1).

Page 77

dynbenchmark: A comparison of single-cell trajectory inference methods.

3
3.4.6 Dataset filtering and normalization

We used a standard single-cell RNA-seq preprocessing pipeline that applies parts of

the scran and scater Bioconductor packages [65]. The advantages of this pipeline

are that it works both with and without spike-ins, and it includes a harsh cell filtering

that looks at abnormalities in library sizes, mitochondrial gene expression and the

number of genes expressed using median absolute deviations (which we set to 3). We

required that a gene was expressed in at least 5% of the cells and that it should have

an average expression higher than 0.02. Furthermore, we used the pipeline to select

the most highly variable genes, using a false discovery rate of 5% and a biological

component higher than 0.5. As a final filter, we removed both all-zero genes and

cells until convergence.

3.4.7 Benchmark metrics

The importance of using multiple metrics to compare complex models has been

stated repeatedly [59]. Furthermore, a trajectory is a model with multiple layers of

complexity, which calls for several metrics each assessing a different layer. We there-

fore defined several possible metrics for comparing trajectories, each investigating

different layers. These are all discussed in Section 3.6 along with examples and ro-

bustness analyses when appropriate.

Next, we created a set of rules to which we think a good trajectory metric should

conform, and tested this empirically for each metric by comparing scores before and

after perturbing a dataset (Section 3.6). Based on this analysis, we chose four metrics

for the evaluation, each assessing a different aspect of the trajectory: (1) the HIMmea-

sures the topological similarity; (2) the F1branches compares the branch assignment;

(3) the cordist assesses the similarity in pairwise cell–cell distances and thus the cel-

lular positions; and (4) the wcorfeatures looks at whether similar important features

(genes) are found in both the reference dataset and the prediction.

The Hamming–Ipsen–Mikhailov metric

The HIM metric [66] uses the two weighted adjacency matrices of the milestone net-

works as input (weighted by edge length). It is a linear combination of the normalized

Hamming distance, which gives an indication of the differences in edge lengths, and

the normalized Ipsen–Mikhailov distance, which assesses the similarity in degree dis-

tributions. The latter has a parameter γ, which was fixed at 0.1 to make the scores

comparable between datasets. We illustrate the metric and discuss alternatives in

Section 3.6.

Page 78

3

dynbenchmark: A comparison of single-cell trajectory inference methods.

The F1 between branch assignments

To compare branch assignment, we used an F1 score, also used used for comparing

biclustering methods [57]. To calculate this metric, we first calculated the similarity of

all pairs of branches between the two trajectories using the Jaccard similarity. Next,

we defined the ‘Recovery’ (respectively ‘Relevance’) as the average maximal similarity

of all branches in the reference dataset (respectively prediction). The F1branches was

then defined as the harmonic mean between Recovery and Relevance. We illustrate

this metric further in Section 3.6.

Correlation between geodesic distances

When the position of a cell is the same in both the reference and the prediction, its

relative distances to all other cells in the trajectory should also be the same. This ob-

servation is the basis for the cordist metric. To calculate the cordist, we first sampled

100 waypoint cells in both the prediction and the reference dataset, using stratified

sampling between the different milestones, edges and regions of delayed commit-

ment, weighted by the number of cells in each collection. We then calculated the

geodesic distances between the union of waypoint cells from both datasets and all

other cells. The calculation of the geodesic distance depended on the location of the

two cells within the trajectory, further discussed in Section 3.6, and was weighted by

the length of the edge in the milestone network. Finally, the cordist was defined as

the Spearman rank correlation between the distances of both datasets. We illustrate

the metric and assess the effect of the number of waypoint cells in Section 3.6.

The correlation between important features

The wcorfeatures assesses whether the same differentially expressed features are

found using the predicted trajectory as in the known trajectory. To calculate this met-

ric, we used Random Forest regression (implemented in the R ranger package [67]),

to predict expression values of each gene, based on the geodesic distances of a cell

to each milestone. We then extracted feature importance values for each feature and

calculated the similarity of the feature importances using a weighted Pearson correla-

tion, weighted by the feature importance in the reference dataset to give more weight

to large differences. As hyperparameters we set the number of trees to 10,000 and

the number of features on which to split to 1% of all available features. We illustrate

this metric and assess the effect of its hyperparameters in Section 3.6.

Page 79

dynbenchmark: A comparison of single-cell trajectory inference methods.

3

Score aggregation

To rank methods, we needed to aggregate the different scores on two levels: across

datasets and across different metrics. This aggregation strategy is explained in more

detail in Section 3.6.

To ensure that easy and difficult datasets have equal influence on the final score, we

first normalized the scores on each dataset across the different methods. We shifted

and scaled the scores to σ = 1 and µ = 0, and then applied the unit probability density

function of a normal distribution on these values to get the scores back into the [0,1]

range.

Since there is a bias in dataset source and trajectory type (for example, there are many

more linear datasets), we aggregated the scores per method and dataset in multiple

steps. We first aggregated the datasets with the same dataset source and trajectory

type using an arithmetic mean of their scores. Next, the scores were averaged over

different dataset sources, using an arithmetic mean that was weighted based on how

much the synthetic and silver scores correlated with the real gold scores. Finally, the

scores were aggregated over the different trajectory types again using an arithmetic

mean.

Finally, to get an overall benchmarking score, we aggregated the different metrics

using a geometric mean.

3.4.8 Method execution

Each execution of a method on a dataset was performed in a separate task as part of a

gridengine job. Each task was allocated one CPU core of an Intel(R) Xeon(R) CPU E5-

2665 at 2.40 GHz, and one R session was started for each task. During the execution

of amethod on a dataset, if the time limit (>1 h) or memory limit (16 GB) was exceeded,

or an error was produced, a zero score was returned for that execution.

3.4.9 Complementarity

To assess the complementarity between different methods, we first calculated for ev-

ery method and dataset whether the overall score was equal to or higher than 95% of

the best overall score for that particular dataset. We then calculated for every method

the weighted percentage of datasets that fulfilled this rule, weighted similarly as in the

benchmark aggregation, and chose the best method. We iteratively added newmeth-

ods until all methods were selected. For this analysis, we did not include any methods

Page 80

3

dynbenchmark: A comparison of single-cell trajectory inference methods.

that require any strong prior information and only includedmethods that could detect

the trajectory types present in at least one of the datasets.

3.4.10 Scalability

To assess the scalability of each method, we started from five real datasets, selected

using the centers from a k-medoids as discussed before. We up- and downscaled

these datasets between 10 and 100,000 cells and 10 and 100,000 features, while never

going higher than 1,000,000 values in total. To generate new cells or features, we

first generated a 10-nearest-neighbor graph of both the cells and features from the

expression space. For every new cell or feature, we used a linear combination of

one to three existing cells or features, where each cell or feature was given a weight

sampled from a uniform distribution between 0 and 1.

We ran each method on each dataset for maximally 1 h and gave each process 10

GB of memory. To determine the running time of each method, we started the timer

right after data loading and the loading of any packages, and stopped the clock before

postprocessing and saving of the output. Pre- and postprocessing steps specific to

a method, such as dimensionality reduction and gene filtering, were included in the

time. To estimate the maximal memory usage, we used the max_vmem value from

the qacct command provided by a gridengine cluster. We acknowledge, however,

that these memory estimates are very noisy and the averages provided in this study

are therefore only rough estimates.

The relationship between the dimensions of a dataset and the running time or

maximal memory usage was modeled using shape constrained additive models

[38], with log10|cells| and log10|features| as predictor variables, and fitted this model

using the scam function as implemented in the R scam package, with log10time (or

log10memory) as outcome.

To classify the time complexity of eachmethodwith respect to the number of cells, we

predicted the running time at 10,000 features with increasing number of cells from

100 to 100,000, with steps of 100. We trained a generalized linear model with the

following function: y ≊ log x +
√

x + x + x2 + x3 with y as running time and x as the

number of cells or features. The time complexity of a method was then classified

using the weights w from this model:

Page 81

dynbenchmark: A comparison of single-cell trajectory inference methods.

3

superquadratic if wx3 > 0.25,

quadratic if wx2 > 0.25,

linear if wx > 0.25,

sublinear if wlog(x) > 0.25 or wsqrt(x) > 0.25,

case with highest weight else.

This process was repeated for classifying the time complexity with respect to the num-

ber of features, and the memory complexity both with respect to the number of cells

and features.

3.4.11 Stability

In the ideal case, a method should produce a similar trajectory, even when the input

data is slightly different. However, running the method multiple times on the same

input data would not be the ideal approach to assess its stability, given that a lot of

tools are artificially deterministic by internally resetting the pseudorandom number

generator (for example, using the ‘set.seed‘ function in R or the ‘random.seed‘ func-

tion in numpy). To assess the stability of eachmethod, we therefore selected a number

of datasets, which consisted of 25% of the datasets accounting for 15% of the total

runtime, chosen such that after aggregation the overall scores still has > 0.99 corre-

lation with the original overall ranking. We subsampled each dataset 10 times with

95% of the original cells and 95% of the original features. We ran every method on

each of the bootstraps, and assessed the stability by calculating the benchmarking

scores between each pair of subsequent models (run i is compared to run i + 1). For
the cordist and F1branches, we only used the intersection between the cells of two

datasets, while the intersection of the features was used for the wcorfeatures.

3.4.12 Usability

We created a transparent scoring scheme to quantify the usability of each method

based on several existing tool quality and programming guidelines in the literature

and online (Table 3.1). The main goal of this quality control is to stimulate the im-

provement of current methods, and the development of user- and developer-friendly

new methods. The quality control assessed six categories, each looking at several as-

pects, which are further divided into individual items. The availability category checks

whether the method is easily available, whether the code and dependencies can be

easily installed, and how the method can be used. The code quality assesses the

quality of the code both from a user perspective (function naming, dummy proofing

Page 82

3

dynbenchmark: A comparison of single-cell trajectory inference methods.

and availability of plotting functions) and a developer perspective (consistent style and

code duplication). The code assurance category is frequently overlooked, and checks

for code testing, continuous integration [49] and an active support system. The doc-

umentation category checks the quality of the documentation, both externally (tu-

torials and function documentation) and internally (inline documentation). The be-

havior category assesses the ease by which the method can be run, by looking for

unexpected output files and messages, prior information and how easy the trajectory

model can be extracted from the output. Finally, we also assessed certain aspects of

the study in which the method was proposed, such as publication in a peer-reviewed

journal, the number of datasets in which the usefulness of the method was shown

and the scope of method evaluation in the paper.

Each quality aspect received a weight depending on how frequently it was found in

several papers and online sources that discuss tool quality (Table 3.1). This was to

make sure that more important aspects, such as the open source availability of the

method, outweighed other less important aspects, such as the availability of a graph-

ical user interface. For each aspect, we also assigned a weight to the individual ques-

tions being investigated (Table 3.1). For calculating the final score, we weighed each

of the six categories equally.

3.4.13 Guidelines

For each set of outcomes in the guidelines figure, we selected one to fourmethods, by

first filtering themethods on those that can detect all required trajectory types, and or-

dering themethods according to their average accuracy score on datasets containing

these trajectory types (aggregated according to the scheme presented in the section

Accuracy).

We used the same approach for selecting the best set of methods in the guidelines

app (http://guidelines.dynverse.org), developed using the R shiny package. This app

will also filter the methods, among other things, depending on the predicted running

time and memory requirements, the prior information available and the preferred ex-

ecution environment (using the dynmethods package or standalone).

3.4.14 Reporting Summary

Further information on research design is available in the Nature Research Report-

ing Summary, available at https://www.nature.com/articles/s41587-019-0071-9#

MOESM2.

Page 83

http://guidelines.dynverse.org
https://www.nature.com/articles/s41587-019-0071-9#MOESM2
https://www.nature.com/articles/s41587-019-0071-9#MOESM2

dynbenchmark: A comparison of single-cell trajectory inference methods.

3
3.5 Supplementary Figures and Tables

Supplementary Table 3.1: Overview of available trajectory inference tools, and

whether they were included in this study. Download link: https://static-content.

springer.com/esm/art%3A10.1038%2Fs41587-019-0071-9/MediaObjects/41587_

2019_71_MOESM3_ESM.xlsx.

Supplementary Table 3.2: Overview of the real datasets used in this study. Down-

load link: https://static-content.springer.com/esm/art%3A10.1038%2Fs41587-019-0071-9/

MediaObjects/41587_2019_71_MOESM4_ESM.xlsx.

Supplementary Figure 3.1: Results from the evaluation, for all methods and across

all evaluation criteria. (a) We characterized the methods according to the wrap-

per type, their required priors, whether the inferred topology is constrained by the

algorithm (fixed) or a parameter (param), and the types of inferable topologies. The

methods are grouped vertically based on the most complex trajectory type the y can

infer. (b) The overall results of the evaluation on four criteria: benchmarking using a

reference trajectory on real and synthetic data, scalability with increasing number of

cells and features, stability across dataset subsamples, and quality of the implemen-

tation. (c) Accuracy of trajectory inference methods across metrics, dataset sources

and dataset trajectory types. The performance of a method is generally more sta-

ble across dataset sources, but very variable depending on the metric and trajectory

type. (d) Predicted execution times and memory usage for varying numbers of cells

and features (# cells × # features). Predictions were made by training a regression

model after running each method on bootstrapped datasets with varying numbers

of cells and features. (e) Stability results by calculating the average pairwise similar-

ity between models inferred across multiple runs of the same method. (f) Usability

scores of the tool and corresponding manuscript, grouped per category. Download

link: https://github.com/dynverse/dynbenchmark_results/raw/master/08-summary/

results_suppfig.pdf.

3.6 Supplementary Note 1: Metrics to compare two tra-

jectories

A trajectory, as defined in our evaluation, is a model with multiple abstractions. The

top abstraction is the topology which contains information about the paths each cell

can take from their starting point. Deeper abstractions involve the mapping of each

Page 84

https://static-content.springer.com/esm/art%3A10.1038%2Fs41587-019-0071-9/MediaObjects/41587_2019_71_MOESM3_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41587-019-0071-9/MediaObjects/41587_2019_71_MOESM3_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41587-019-0071-9/MediaObjects/41587_2019_71_MOESM3_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41587-019-0071-9/MediaObjects/41587_2019_71_MOESM4_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41587-019-0071-9/MediaObjects/41587_2019_71_MOESM4_ESM.xlsx
https://github.com/dynverse/dynbenchmark_results/raw/master/08-summary/results_suppfig.pdf
https://github.com/dynverse/dynbenchmark_results/raw/master/08-summary/results_suppfig.pdf

3

dynbenchmark: A comparison of single-cell trajectory inference methods.

cell to a particular branch within this network, and the position (or ordering) of each

cells within these branches. Internally, the topology is represented by the milestone

network and regions of delayed commitment, the branch assignment and cellular

positions are represented by the milestone percentages (Figure 3.12).

Given the multilayered complexity of a trajectory model, it is not trivial to compare

the similarity of two trajectory models using only one metric. We therefore sought to

use different comparison metrics, each serving a different purpose:

• Specificmetrics investigate one particular aspect of the trajectory. Suchmetrics

make it possible to find particular weak points for methods, e.g. that a method is

very good at ordering but does not frequently find the correct topology. More-

over, having multiple individual metrics allow personalised rankings of methods,

for example for users which are primarily interested in using the method correct

topology.

• Application metrics focus on the quality of a downstream analysis using the

trajectory. For example, it measures whether the trajectory can be used to find

accurate differentially expressed genes.

• Overallmetrics should capture all the different abstractions, in other words such

metrics measure whether the resulting trajectory has a good topology, that the

cells belong to similar branches and that they are ordered correctly.

Here, we first describe and illustrate several possible specific, application and overall

metrics. Next, we test these metrics on several test cases, to make sure they robustly

identify ”wrong” trajectory predictions.

All metrics described here were implemented within the dyneval R package (https:

//github.com/dynverse/dyneval).

3.6.1 Metric characterisation and testing

isomorphic, edgeflip and HIM: Edit distance between two trajectory topologies

We used three different scores to assess the similarity in the topology between two

trajectories, irregardless of where the cells were positioned.

For all three scores, we first simplified the topology of the trajectory to make both

graph structures comparable:

• As we are only interested in the main structure of the topology without start or

end, the graph was made undirected.

Page 85

https://github.com/dynverse/dyneval
https://github.com/dynverse/dyneval

dynbenchmark: A comparison of single-cell trajectory inference methods.

3

• All milestones with degree 2 were removed. For example in the topology A ⇒ B

⇒ C ⇒ D, C ⇒ D, the B milestone was removed

• A linear topology was converted to A ⇒ B ⇒ C

• A cyclical topology such as A ⇒ B ⇒ C ⇒ D or A ⇒ B ⇒ A were all simplified to

A ⇒ B ⇒ C ⇒ A

• Duplicated edges such as A ⇒ B, A ⇒ B were decoupled to A ⇒ B, A ⇒ C ⇒ B

The isomorphic score returns 1 if two graphs are isomorphic, and 0 if they were not.

For this, we used the used the BLISS algorithm [68], as implemented in the R igraph

package.

The edgeflip score was defined as the minimal number of edges which should be

added or removed to convert one network into the other, divided by the total number

of edges in both networks. This problem is equivalent to themaximum common edge

subgraph problem, a known NP-hard problem without a scalable solution [69]. We

implemented a branch and bound approach for this problem, using several heuristics

to speed up the search:

• First check all possible edge additions and removals corresponding to the num-

ber of different edges between the two graphs.

• For each possible solution, first check whether:

1. The maximal degree is the same

2. The minimal degree is the same

3. All degrees are the same after sorting

• Only then check if the two graphs are isomorphic as described earlier.

• If no solution is found, check all possible solutions with two extra edge addi-

tions/removals.

The HIM metric (Hamming-Ipsen-Mikhailov distance) [66] which was adopted from

the R nettools package (https://github.com/filosi/nettoolshttps://github.com/filosi/nettools).

It uses an adjacency matrix which was weighted according to the lengths of each

edges within the milestone network. Conceptually, HIM is a linear combination of:

• The normalised Hamming distance [70], which calculates the distance between

two graphs by matching individual edges in the adjacency matrix, but disregards

overall structural similarity.

• The normalised Ipsen-Mikhailov distance [71], which calculates the overall dis-

tance of two graphs based onmatches between its degree and adjacencymatrix,

while disregarding local structural similarities. It requires a γ parameter, which

Page 86

https://github.com/filosi/nettools

3

dynbenchmark: A comparison of single-cell trajectory inference methods.

is usually estimated based on the number of nodes in the graph, but which we

fixed at 0.1 so as to make the score comparable across different graph sizes.

We compared the three scores on several common topologies (Figure 3.13a). While

conceptually very different, the edgeflip and HIM still produce similar scores (Figure

3.13b). The HIM tends to punish the detection of cycles, while the edgeflip is more

harsh for differences in the number of bifurcations (Figure 3.13b). The main differ-

ence however is that the HIM takes into account edge lengths when comparing two

trajectories, as illustrated in (Figure 3.13c). Short ”extra” edges in the topology are less

punished by the HIM than by the edgeflip.

To summarise, the different topology based scores are useful for different scenarios:

• If the two trajectories should only be compared when the topology is exactly

the same, the isomorphic should be used.

• If it is important that the topologies are similar, but not necessarily isomorphic,

the edgeflip is most appropriate.

• If the topologies should be similar, but shorter edges should not be punished as

hard as longer edges, the HIM is most appropriate.

F1branches and F1milestones: Comparing how well the cells are clustered in the trajec-

tory

Perhaps one of the simplest ways to calculate the similarity between the cellular po-

sitions of two topologies is by mapping each cell to its closest milestone or branch

3.14. These clusters of cells can then be compared using one of the many external

cluster evaluation measures [57]. When selecting a cluster evaluation metric, we had

two main conditions:

- Because we allow methods to filter cells in the trajectory, the metric should be able

to handle ”non-exhaustive assignment”, where some cells are not assigned to any

cluster. - The metric should give each cluster equal weight, so that rare cell stages

are equally important as large stages.

The F1 score between the Recovery and Relevance is ametric which conforms to both

these conditions. This metric will map two clustersets by using their shared members

based on the Jaccard similarity. It then calculates the Recovery as the average max-

imal Jaccard for every cluster in the first set of clusters (in our case the reference

trajectory). Conversely, the Relevance is calculated based on the average maximal

similarity in the second set of clusters (in our case the prediction). Both the Recovery

and Relevance are then given equal weight in a harmonic mean (F1). Formally, if C

and C ′ are two cell clusters:

Page 87

dynbenchmark: A comparison of single-cell trajectory inference methods.

3
Jaccard(c, c′) = |c ∩ c′|

|c ∪ c′|

Recovery = 1
|C|

∑
c∈C

max
c′∈C′

Jaccard(c, c’)

Relevance = 1
|C ′|

∑
c′∈C′

max
c∈C

Jaccard(c, c’)

F1 = 2
1

Recovery + 1
Relevance

cordist: Correlation between geodesic distances

When the position of a cell is the same in both the reference and the prediction, its

relative distances to all other cells in the trajectory should also be the same. This

observation is the basis for the cordist metric.

The geodesic distance is the distance a cell has to go through the trajectory space

to get from one position to another. The way this distance is calculated depends on

how two cells are positioned, showcased by an example in Figure 3.15:

• Both cells are on the same edge in the milestone network. In this case, the

geodesic distance is defined as the product of the difference in milestone per-

centages and the length of their shared edge. For cells a and b in the example,

d(a, b) is equal to 1 × (0.9 − 0.2) = 0.7.

• Cells reside on different edges in the milestone network. First, the distance of

the cell to all its nearby milestones is calculated, based on its percentage within

the edge and the length of the edge. These distances in combination with the

milestone network are used to calculate the shortest path distance between the

two cells. For cells a and c in the example, d(a, X) = 1×0.9 and d(c, X) = 3×0.2,
and therefore d(a, c) = 1 × 0.9 + 3 × 0.2.

The geodesic distance can be easily extended towards cells within regions of delayed

commitment. When both cells are part of the same region of delayed commitment,

the geodesic distance was defined as themanhattan distances between themilestone

percentages weighted by the lengths from the milestone network. For cells d and e

in the example, d(d, e) is equal to 0 × (0.3 − 0.2) + 2 × (0.7 − 0.2) + 3 × (0.4 − 0.1) =
1.9. The distance between two cells where only one is part of a region of delayed

commitment is calculated similarly to the previous paragraph, by first calculating the

distance between the cells and their neighbouring milestones first, then calculating

the shortest path distances between the two.

Page 88

3

dynbenchmark: A comparison of single-cell trajectory inference methods.

Calculating the pairwise distances between cells scales quadratically with the number

of cells, and would therefore not be scaleable for large datasets. For this reason, a set

of waypoint cells are defined a priori, and only the distances between the waypoint

cells and all other cells is calculated, in order to calculate the correlation of geodesic

distances of two trajectories (Figure 3.16a). These cell waypoints are determined by

viewing each milestone, edge and region of delayed commitment as a collection of

cells. We do stratified sampling from each collection of cells by weighing them by

the total number of cells within that collection. For calculating the cordist between

two trajectories, the distances between all cells and the union of both waypoint sets

is computed.

To select the number of cell waypoints, we need to find a trade-off between the accu-

racy versus the time to calculate cordist. To select an optimal number of cell waypoints,

we used the synthetic dataset with the most complex topology, and determined the

cordist at different levels of both cell shuffling and number of cell waypoints (Figure

3.16a). We found that using cell waypoints does not induce a systematic bias in the

cordist, and that its variability was relatively minimal when compared to the variability

between different levels of cell shuffling when using 100 or more cell waypoints.

Although the cordist’s main characteristic is that it looks at the positions of the cells,

other features of the trajectory are also (partly) captured. To illustrate this, we used

the geodesic distances themselves as input for dimensionality reduction (Figure 3.17)

with varying topologies. This reduced space captures the original trajectory structure

quite well, including the overall topology and branch lengths.

NMSErf andNMSElm: Using the positions of the cells within one trajectory to predict

the cellular positions in the other trajectory

An alternative approach to detect whether the positions of cells are similar between

two trajectories, is to use the positions of one trajectory to predict the positions within

the other trajectory. If the cells are at similar positions in the trajectory (relative to its

nearby cells), the prediction error should be low.

Specifically, we implemented two metrics which predict the milestone percentages

from the reference by using the predicted milestone percentages as features (Figure

3.18). We did this with two regression methods, linear regression (lm, using the R lm

function) and Random Forest (rf, implemented in the ranger package [67]). In both

cases, the accuracy of the prediction was measured using the Mean Squared error

(MSE), in the case of Random forest we used the out-of-bag mean-squared error.

Next, we calculated MSEworst equal to the MSE when predicting all milestone per-

centages as the average. We used this to calculate the normalised mean squared

Page 89

dynbenchmark: A comparison of single-cell trajectory inference methods.

3

error as NMSE = 1 − MSE
MSEworst

. We created a regression model for every milestone

in the gold standard, and averaged the NMSE values to finally obtain the NMSErf and

NMSElm scores.

corfeatures and wcorfeatures: The accuracy of dynamical differentially expressed fea-

tures/genes.

Although most metrics described above already assess some aspects directly relevant

to the user, such as whether the method is good at finding the right topology, these

metrics do not assess the quality of downstream analyses and hypotheses which can

be generated from these models.

Perhaps the main advantage of studying cellular dynamic processes using single-cell

-omics data is that the dynamics of gene expression can be studied for the whole

transcriptome. This can be used to construct other models such as dynamic regula-

tory networks and gene expression modules. Such analyses rely on a ”good-enough”

cellular ordering, so that it can be used to identify dynamical differentially expressed

genes.

To calculate the corfeatures we used Random forest regression to rank all the features

according to their importance in predicting the positions of cells in the trajectory.

More specifically, we first calculated the geodesic distances for each cell to all mile-

stones in the trajectory. Next, we trained a Random Forest regression model (imple-

mented in the R ranger package [67], https://github.com/imbs-hl/ranger) to predict

these distances for each milestone, based on the expression of genes within each

cell. We then extracted feature importances using the Mean Decrease in Impurity (im-

portance = ’impurity’ parameter of the ranger function), as illustrated in Figure 3.19.

The overall importance of a feature (gene) was then equal to the mean importance

over all milestones. Finally, we compared the two rankings by calculating the Pearson

correlation, with values between -1 and 0 clipped to 0.

Random forest regression has two main hyperparameters. The number of trees to

be fitted (num_tree parameter) was fixed to 10000 to provide accurate and stable

estimates of the feature importance (Figure 3.20. The number of features on which

can be split (mtry parameter) was set to 1% of all available features (instead of the

default square-root of the number of features), as to make sure that predictive but

highly correlated features, omnipresent in transcriptomics data, are not suppressed in

the ranking.

For most datasets, only a limited number of features will be differentially expressed in

the trajectory. For example, in the dataset used in Figure 3.20 only the top 10%-20%
show a clear pattern of differential expression. The correlation will weight each of

Page 90

https://github.com/imbs-hl/ranger

3

dynbenchmark: A comparison of single-cell trajectory inference methods.

these features equally, and will therefore give more weight to the bottom, irrelevant

features. To prioritise the top differentially expressed features, we also implemented

thewcorfeatures, which will weight the correlation using the feature importance scores

in the reference so that the top features have relatively more impact on the score

(Figure 3.21).

3.6.2 Metric conformity

Although most metrics described in the previous section make sense intuitively, this

does not necessarily mean that these metrics are robust and will generate reasonable

results when used for benchmarking. This is because different methods and datasets

will all lead to a varied set of trajectory models:

• Real datasets have all cells grouped onto milestones

• Some methods place all cells in a region of delayed commitment, others never

generate a region of delayed commitment

• Some methods always return a linear trajectory, even if a bifurcation is present

in the data

• Some methods filter cells

A good metric, especially a good overall metric, should work in all these circum-

stances. To test this, we designed a set of rules to which a good metric should con-

form, and assessed empirically whether a metric conforms to these rules.

We generated a panel of toy datasets (using our dyntoy package, https://github.com/

dynverse/dyntoy) with all possible combinations of:

• # cells: 10, 20, 50, 100, 200, 500

• # features: 200

• topologies: linear, bifurcation, multifurcating, tree, cycle, connected graph and

disconnected graph

• Whether cells are placed on the milestones (as in real data) or on the

edges/regions of delayed commitment between the milestones (as in synthetic

data)

We then perturbed the trajectories in these datasets in certain ways, and tested

whether the scores follow an expected pattern. An overview of the confor-

mity of every metric is first given in Table 3.3. The individual rules and metric

behaviour are discussed in the Supplementary Material that can be found at

https://www.nature.com/articles/s41587-019-0071-9#Sec34.

Page 91

https://github.com/dynverse/dyntoy
https://github.com/dynverse/dyntoy
https://www.nature.com/articles/s41587-019-0071-9#Sec34

dynbenchmark: A comparison of single-cell trajectory inference methods.

3

Table 3.3: Overview of whether a particular metric conforms to a particular rule

name c
o
r d

is
t

N
M
SE

rf

N
M
SE

lm

e
d
g
e
fl
ip

H
IM

is
o
m
o
rp
h
ic

c
o
r f
e
at
u
re
s

w
c
o
r f
e
at
u
re
s

F1
b
ra
n
c
h
e
s

F1
m
ile

st
o
n
e
s

m
e
an

g
e
o
m
e
tr
ic

Same score on identity 3 7 3 3 3 3 3 7 3 3 3

Local cell shuffling 3 3 3 7 7 7 3 3 7 3 3

Edge shuffling 3 3 3 7 7 7 3 3 3 3 3

Local and global cell shuffling 3 3 3 7 7 7 3 3 3 3 3

Changing positions locally
and/or globally

3 3 3 7 7 7 3 3 7 7 3

Cell filtering 3 3 3 7 7 7 3 3 3 3 3

Removing divergence regions 3 3 3 7 7 7 3 3 7 3 3

Move cells to start milestone 3 3 3 7 7 7 3 3 7 3 3

Move cells to closest milestone 3 3 3 7 7 7 3 3 7 3 3

Length shuffling 3 7 3 7 3 7 7 7 7 3 3

Cells into small subedges 7 3 7 3 3 3 3 7 3 3 3

New leaf edges 3 3 7 3 3 3 7 7 3 3 3

New connecting edges 3 3 7 3 3 3 3 3 3 3 3

Changing topology and cell
position

7 7 7 7 7 7 7 7 7 7 3

Bifurcation merging 3 7 3 3 3 3 3 3 3 3 3

Bifurcation merging and
changing cell positions

3 3 3 7 7 7 3 3 3 3 3

Bifurcation concatentation 3 7 3 3 3 3 3 3 3 3 3

Cycle breaking 3 7 3 3 3 3 3 3 7 3 3

Linear joining 3 3 3 3 3 3 3 3 7 3 3

Linear splitting 3 3 3 3 3 3 3 3 3 3 3

Change of topology 3 7 7 3 3 3 3 3 7 3 3

Cells on milestones vs edges 3 3 3 3 3 3 3 3 3 3 3

Page 92

3

dynbenchmark: A comparison of single-cell trajectory inference methods.

3.6.3 Score aggregation

To rank themethods, we need to aggregate on two levels: across datasets and across

specific/application metrics to calculate an overall metric.

Aggregating over datasets

When combining different datasets, it is important that the biases in the datasets does

not influence the overall score. In our study, we define three such biases, although

there are potentially many more:

• Difficulty of the datasets Some datasets are more difficult than others. This can

have various reasons, such as the complexity of the topology, the amount of

biological and technical noise, or the dimensions of the data. It is important that

a small increase in performance on a more difficult dataset has an equal impact

on the final score as a large increase in performance on easier datasets.

• Dataset sources It is much easier to generate synthetic datasets than real

datasets, and this bias is reflected in our set of datasets. However, given

their higher biological relevance, real datasets should be given at least equal

importance than synthetic datasets.

• Trajectory types There are many more linear and disconnected real datasets,

and only a limited number of tree or graph datasets. This imbalance is there

because historically most datasets have been linear datasets, and because it is

easy to create disconnected datasets by combining different datasets. However,

this imbalance in trajectory types does not necessarily reflect the general impor-

tance of that trajectory type.

We designed an aggregation scheme which tries to prevent these biases from influ-

encing the ranking of the methods.

The difficulty of a dataset can easily have an impact on how much weight the dataset

gets in an overall ranking. We illustrate this with a simple example in Figure 3.22. One

method consistently performs well on both the easy and the difficult datasets. But

because the differences are small in the difficult datasets, the mean would not give

this method a high score. Meanwhile, a variable method which does not performwell

on the difficult dataset gets the highest score, because it scored so high on the easier

dataset.

To avoid this bias, we normalise the scores of each dataset by first scaling and center-

ing to µ = 0 and σ = 1, and then moving the score values back to [0, 1] by applying the

Page 93

dynbenchmark: A comparison of single-cell trajectory inference methods.

3

unit normal density distribution function. This results in scores which are compara-

ble across different datasets (Figure 3.22). In contrast to other possible normalisation

techniques, this will still retain some information on the relative difference between

the scores, which would have been lost when using the ranks for normalisation. An

example of this normalisation, which will also be used in the subsequent aggregation

steps, can be seen in Figure 3.23.

After normalisation, we aggregate step by step the scores from different datasets. We

first aggregate the datasets with the same dataset source and trajectory type using

an arithmetic mean of their scores (Figure 3.24a). Next, the scores are averaged over

different dataset sources, using a arithmetic mean which was weighted based on how

much the synthetic and silver scores correlatedwith the real gold scores (Figure 3.24b).

Finally, the scores are aggregated over the different trajectory types again using a

arithmetic mean (Figure 3.24c).

Overall metrics

Undoubtedly, a single optimal overall metric does not exist for trajectories, as different

users may have different priorities:

• A user may be primarily interested in defining the correct topology, and only use

the cellular ordering when the topology is correct

• A user may be less interested in how the cells are ordered within a branch, but

primarily in which cells are in which branches

• A usermay already know the topology, andmay be primarily interested in finding

good features related to a particular branching point

Each of these scenarios would require a combinations of specific and applicationmet-

rics with different weights. To provide an ”overall” ranking of the metrics, which is im-

partial for the scenarios described above, we therefore chose a metric which weighs

every aspect of the trajectory equally:

• Its ordering, using the cordist

• Its branch assignment, using the F1branches

• Its topology, using the HIM

• The accuracy of differentially expressed features, using the wcorfeatures

Next, we considered three different ways of averaging different scores: the arithmetic

mean, geometric mean and harmonic mean. Each of these types of mean have dif-

ferent use cases. The harmonic mean is most appropriate when the scores would

Page 94

3

dynbenchmark: A comparison of single-cell trajectory inference methods.

all have a common denominator (as is the case for the Recovery and Relevance de-

scribed earlier). The arithmetic mean would be most appropriate when all the metrics

have the same range. For our use case, the geometric mean is the most appropriate,

because it is low if one of the values is low. For example, this means that if a method is

not good at inferring the correct topology, it will get a low overall score, even if it per-

forms better at all other scores. This ensures that a high score will only be reached if a

prediction has a good ordering, branch assignment, topology, and set of differentially

expressed features.

The final overall score (Figure 3.25) for a method was thus defined as:

Overall = meangeometric = 4
√
cordist × F1branches × HIM × wcorfeatures

We do however want to stress that different use cases will require a different overall

score to order the methods. Such a context-dependent ranking of all methods is

provided through the dynguidelines app (http://guidelines.dynverse.org).

Page 95

http://guidelines.dynverse.org

dynbenchmark: A comparison of single-cell trajectory inference methods.

3 ●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

● ●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●●
●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●●

●
●

●

●

●

●

●
●●
●
●●

●●

●

●●

●

●

●

●

●
● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●●● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●●

●

●●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●●

●●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●

●●

●

●

●●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
● ●

●
●

●
●

●

●

●●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●
●

●
●

●

●

●

●

●
●

●●●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●●●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

● ●

●

●●

●

●

●●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●●

●
●

●

●
●●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●● ●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●
●●

●

●

●

●

●

●

●
●

●

●●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●
●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●
● ●

●

●
● ●

●

●

●

● ●

●●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

● ●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●
●

●

●

●

●

●●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●●●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

● ●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●●●

●

●●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●●

●

●

●●

●

●●

●
●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

● ●●

●

●

●●
●

●

●●

●

●

●
●

●

●

●●
●

●

●
●

●
● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●
●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●

●

● ●

●

●
●

●
● ●

●

●
●●

●●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●●

●

●●●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●
●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●
●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●●

●●●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●●

●●
●
●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●
●

●

●

●

●
●●

●

●

●

●

● ●
●

●

●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

● ●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●
● ●

●

●
● ●

● ●

●

●
●

●
●

●

●
●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●
●

●

●●

●●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●
●●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●
●

●

●

●
●

●● ●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●●

●
●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●●
●
●

●

●

●

●

●
●

●
●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●●

●

●●

●

●●

●

●
●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●●

●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●●

●

●●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●●

●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

● ●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●● ●

●

●

●

●

●

●

●●
●

●

● ●

●●

●

●

●

●

●●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●
●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●
●

●

●●

●●

●

●

●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
● ●

●
●

●

●

●
●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●
●

●

●●

●●

●

●

●

●

●●

●● ●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

● ●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

● ●

●

●

●

●
●

●●

●
●●

● ●

●

●
●

●
●

●

●
●

●
●

●

●

●

●●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●●●
●
●

●

●●
●●●

●

●

●

●
●

●

● ●

●

●
●
●

●●

●

●
● ●

●●

●

●
●

●
●

●

●
●

●

●
●
●

●

● ●
●

●
●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●
●

●

●●●

●

●
●

●

●
●

● ●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

● ●
●

●

●●●

●

●
●

●

●
●

●●
●

●

●
●

●

●

● ●●●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●●●

●

●●

● ●

●

●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●
●

●●

● ●
●

●

●

●●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●● ●

●

●● ●

●

●
●

●

●

●
●●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●●
●

●

● ● ●

●

●
●

●

●
●

● ●
●

●

●
●

●

●

● ●●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●
●

●
●
●●

●

●●
●

●

●

●●

●●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

● ●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●
●

●
●●

●

●
●●

● ●

●

●
●

●
●

●

●
●

●

●
●

●

●

●●
●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●●

●●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●● ●●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●●●
●

● ●●

●

●

●

●●
●

●

●

●

●●

●

●

●

●
●

●●
●

●

●
●

●

●

●●● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●

● ●

●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●●

●

●

●

●

●●

●

●

●● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●●
●●

●

●

●

●

●

● ●

●

●

●
●
●

●
●

●
●

●

●

●

●●

●

●
●

●
●

●

●

●

●
●●

●●● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●
●

●

●

●

●

●●
● ●

●

●

●

●

●
●

●

● ●

●

●
●

●
● ●

●

●
●●

●●

●

●
●

●
●

●

●
●

●

●
●

●

●

● ●
●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●●
●

●

●

●●

●

●

●

●
●

●

●

●● ●
●

●●●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●
●

●●
●

●

●
●

●● ●● ●●
● ●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●●

●●
●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
● ●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●
●

●●

● ●
●

●

●
●
●

●

●

●

●
●

●

●
●●

●
● ●●

●

●●

●

●
●

●●

●

●●

●

●● ●●

●

●
● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●●●

●
●●

●

●
●

●

●

●

●

●
●

●
●

●●

●

●
● ●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●
●●

●●

●

●

●●●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

● ●
●

●

●

●●

●

●

●

●

●
● ●●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●
●

●●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

● ●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●●
●

●

●
●

●

●●

●

●●

●

●●

●

●

●

●● ●

●● ●

●

●
●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●●

●
●

●●

●●
● ●

●

● ●
●
●●●

●

●

●
●

●
●

●
●

●
●

● ●●●
● ●

●

●
●

●

●

●

●
●●

●●● ●
●

●

●
●

●
●

●

●

●
●

●

●
●●

●

●

● ●
●

●● ●
●

●

●
●●

●● ●
●

●

●

●
●

●

● ●

●

●
●
●

●●

●

●
●●

●●

●

●
●

●
●

●

●
●

●

●
●
●

●

●●
●

●
●

●
●

●●
●●

●

●

●
●●

●

●●

●

●
●●● ●

●

●●

●

●

●

● ●●
●

● ●●

●

● ●

● ●
●

●

●● ●

●

●
●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

● ●

●

●

●

●

●
●

●●●

●

●
●

●●

●●

●●

●
●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
● ●

●●

●
●

●

●

●

●●●

●

●

●

●●●

●

●
●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

● ●●

●

●
●

●
●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

● ●
●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●
●

●
●●

●

●

●●
●

● ●●
●

●

●
●●

● ● ●

●

●

●

●
●

●

● ●

●

●
●

●
●●

●

●
●●

● ●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●
●

●
●

●
●

●●
●●
●

●

●
● ●
●

●●
●

●
●●●

●

●
● ●

●

●

●

●●●
●
●●●

●

●●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●●
●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●
●

●
● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●●

●

●

●
●

●

●
●
●

●
●

●

●

●

●

●●

●
●

●
●●

● ●

●
●

●

●

●

●●●

●

●

●

● ● ●

●

●
●

●

●

●

●

●

●

●●
●

●

●
●

●

●●

●

●●

●

●●

●

●

●

●●●

● ●●

●

●
●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●●

●
●

● ●

●●
●●

●

●●
●

●●●

●

●

●
●

●
●

●
●
●

●

●●●●
●● ●

●
●

●

●

●

●
●●

●● ●●
●

●

●
●

●
●

●

●

●
●

●

●
●●

●

●

● ●
●

●●●
●

●

●
●●
● ●●

●

●

●

●
●

●

●●

●

●
●

●
●●

●

●
●●

●●

●

●
●

●
●

●

●
●

●

●
●
●

●

●●
●

●
●

●
●

● ●
●●

●

●

●
● ●
●

● ●
●

●

●

●●
●

●
● ●
●

●

●

● ●●
●
● ●●

●

●●

●●
●

●

●●●

●

●
●

●

●
●

●●
●

●

●
●

●●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●●

●

●

●

●

●
●

●●●

●

●
●

● ●

●●

● ●

●
●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●●

●●
●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●
●●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

● ●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●

●

●

●
●

●●

●
●

●●

●●
●●

●

●● ●
●● ●

●

●

●
●

●
●

●
●

●
●

●●●●
●●

●

●
●

●

●

●

●
●●

●●●●
●

●

●
●

●
●

●

●

●
●

●

●
●●

●

●

● ●
●

●●●
●

●

●
●●

●●●
●

●

●

●
●

●

●●

●

●

●

●
●●

●

●
●●

●●

●

●
●

●
●

●

●
●

●

●
●

●

●

●●
●
●

●

●
●

●●
●●

●

●

●
●

●

●

●●
●

●
●●●●

●
●●

●

●

●

● ●

●

●
●

●

●

●

●●

●●
●

●

●● ●

●

●
●

●

●
●

●●
●

●

●
●

●●● ●● ●
●●
●

●
● ●

●

●

●●

●
●

●●

●

●

●

●

●
●

●●●

●

●
●

●●

●●

●●

●
●●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●●

●●
●
●

●

●
●

●

●
●

●

●

●

●

● ●

●
●

●
●●

● ●

●
●

●

●

●

●●●

●

●

●

● ●●

●

●
●

●

●

●

●

●
●

●●
●

●

●
●

●

●●

●

●●

●

●●

●

●

●●●●

●●●

●

●
●

●
●

●

●

●
●●

●

●
●

●

●

●
●

● ●

●
●

●●

● ●
● ●

●

● ●
●
●●●

●

●

●
●

●
●

●
●

●
●

●●●●
●● ●

●
●
●

●

●

●
● ●

●●●●
●

●

●
●

●
●

●

●

●
●
●

●
●●

●

●

● ●
●
●● ●

●
●

●
●●
●●●

●

●

●

●
●

●

●●

●

●
●

●
●●

●

●
●●

●●

●

●
●

●
●

●

●
●

●

●
●

●

●

●●
●
●

●

●
●

●●
●●

●

●

●
●●
●

●●
●

●
●●● ●

●
●●

●

●

●

●● ●
●
●●●

●

● ●

●●
●

●

●● ●

●

●
●

●

●
●

●●
●

●

●
●

●●●● ● ●
●●

●
●

● ●
●

●

● ●

●
●

●●

●

●

●

●

●
●

●●●

●

●
●

●●

●●

●●

●
●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●●

●●
●

●

●

●
●
●

●
●

●

●

●

●

●●

●
●

●
● ●

●●

●
●

●

●

●

●●●

●

●

●

● ●●

●

●
●

●

●

●

●

●
●

●●
●

●

●
●

●

●●

●

●●

●

●●

●

●

●●●●

●●●

●

●
●

●
●

●

●

●
●●

●

●
●

●

●

●
●

● ●

●
●

●●

● ●
● ●

●

● ●
●
●●●

●

●

●
●

●
●

●
●

●
●

●●●●
●● ●

●
●
●

●

●

●
● ●

●●●●
●

●

●
●

●
●

●

●

●
●
●

●
●●

●

●

● ●
●
●● ●

●
●

●
●●
●●●

●

●

●

●
●

●

●●

●

●
●

●
●●

●

●
●●

●●

●

●
●

●
●

●

●
●

●

●
●

●

●

●●
●
●

●

●
●

●●
●●

●

●

●
●●
●

●●
●

●
●●● ●

●
●●

●

●

●

●● ●
●
●●●

●

● ●

●●
●

●

●● ●

●

●
●

●

●
●

●●
●

●

●
●

●●●● ● ●
●●

●
●

● ●
●

●

● ●

●
●

●●

●

●

●

●

●
●

●●●

●

●
●

●●

●●

●●

●
●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●●

●●
●

●

●

●
●
●

●
●

●

●

●

●

●●

●
●

●
● ●

●●

●
●

●

●− −−−−−−−
−−

0.00

0.25

0.50

0.75

1.00

Slin
gs

ho
t

PA
GA Tr

ee

SCORPIU
S

Fa
te

ID
PA

GA

TSCAN
Ang

le
M

ST

W
at

er
fal

l

Em
be

dd
r

Com
po

ne
nt

 1

STEM
NET

M
on

oc
le

DDRTr
ee

pC
re

od
e

SLI
CE

M
AT

CHER

M
on

oc
le

IC
A

ElP
iG

ra
ph

 lin
ea

r

ce
llT

re
e

m
ap

tp
x

Phe
no

Pat
h

ElP
iG

ra
ph

 cy
cle

to
ps

lam

SCUBA
M

FA

W
an

de
rlu

st

W
ish

bo
ne

DPT

ce
llT

re
e

VEM

Sinc
ell

M
pa

th

Rac
eI

D /
Ste

m
ID

ElP
iG

ra
ph

ou
ija

flo
w

Cell
Tra

ils

re
CAT

URD

FORKS

Cell
Rou

te
r

GPfat
es

Gra
nd

Prix

M
ERLo

T

SLI
CER

ps
eu

do
gp

ce
llT

re
e

Gibb
s

CALI
STA

SCOUP
ou

ija

SCIM
ITA

R

O
ve

ra
ll

sc
or

e

Dataset source ● ● ● ● ● ●real/gold real/silver synthetic/dyngen synthetic/dyntoy synthetic/prosstt synthetic/splatter

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●
●

●

●

corr = 0.81

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●
●

●

●

corr = 0.73

●

●

●

● ●

●

●

●

●●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●
●

●

●

corr = 0.69

●

●

●

● ●

●

●

●

●●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●
●
●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●
●

●

●

corr = 0.62

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●
●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●
●
●

●

corr = 0.53

real/silver synthetic/dyngen synthetic/splatter synthetic/dyntoy synthetic/prosstt

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

Overall score on datasets from sourceO
ve

ra
ll

sc
or

e
on

 r
ea

l/g
ol

d
da

ta
se

ts

− −−−−−−−
−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

0.00

0.25

0.50

0.75

1.00

Slin
gs

ho
t

PA
GA Tr

ee

SCORPIU
S

Fa
te

ID
PA

GA

TSCAN
Ang

le
M

ST

W
at

er
fal

l

Em
be

dd
r

Com
po

ne
nt

 1

STEM
NET

M
on

oc
le

DDRTr
ee

pC
re

od
e

SLI
CE

M
AT

CHER

M
on

oc
le

IC
A

ElP
iG

ra
ph

 lin
ea

r

ce
llT

re
e

m
ap

tp
x

Phe
no

Pat
h

ElP
iG

ra
ph

 cy
cle

to
ps

lam

SCUBA
M

FA

W
an

de
rlu

st

W
ish

bo
ne

DPT

ce
llT

re
e

VEM

Sinc
ell

M
pa

th

Rac
eI

D /
Ste

m
ID

ElP
iG

ra
ph

ou
ija

flo
w

Cell
Tra

ils

re
CAT

URD

FORKS

Cell
Rou

te
r

GPfat
es

Gra
nd

Prix

M
ERLo

T

SLI
CER

ps
eu

do
gp

ce
llT

re
e

Gibb
s

CALI
STA

SCOUP
ou

ija

SCIM
ITA

R

O
ve

ra
ll

sc
or

e

Trajectory type Cycle Linear Convergence Bifurcation Multifurcation Tree Acyclic graph Connected graph Disconnected graph

Prediction too
simple

Prediction too
complex

PAGA Slingshot PAGA Tree Monocle DDRTree pCreode

−20 −10 0 10 20 −20 −10 0 10 20 −20 −10 0 10 20 −20 −10 0 10 20 −20 −10 0 10 20
Cycle

Linear

Convergence

Bifurcation

Multifurcation

Tree

Acyclic graph

Connected graph

Disconnected graph

All trajectory types

Difference in topology size (= # milestones + # edges)
between prediction and reference

R
ef

er
en

ce
 tr

aj
ec

to
ry

 ty
pe

a

b

c

d

Figure 3.5: Accuracy of trajectory inference methods. a Overall score for all methods across
339 datasets, colored by the source of the datasets. Black line indicates the mean. b Similarity
between the overall scores of all dataset sources, compared to real datasets with a gold standard,
across all methods (n = 46, after filtering out methods that errored too frequently). Shown in
the top left is the Pearson correlation. c Bias in the overall score towards trajectory types for all
methods across 339 datasets. Black line indicates the mean. d Distributions of the difference in
size between predicted and reference topologies. A positive difference means that the topology
predicted by the method is more complex than the one in the reference.

Page 96

3

dynbenchmark: A comparison of single-cell trajectory inference methods.

Running on all datasets

Running both PAGA Tree and SCORPIUS

PAGA Tree, SCORPIUS and Slingshot

Add Angle

Add Monocle ICA

Add PAGA

Add cellTree maptpx

Add Embeddr

Add MERLoT

Add GrandPrix

Add reCAT

Add pCreode

PAGA Tree
will result in a top model 27% of the time

will result in at least one top model 45% of the time

↳ ≥ 1 top model 57% of the time

↳ 64%

↳ 70%

↳ 74%

↳ 78%

↳ 81%

↳ 84%

↳ 87%

↳ 90%

↳ 92%

other methodsWhile perform less well

All trajectory
types

Linear → tree

Cycle

Linear

Bifurcation

Multifurcation

Tree

Connected
graph

Disconnected
graph

PAGA Tree SCORPIUS Slingshot Angle Monocle
ICA

PAGA

Slingshot PAGA Tree SCORPIUSMonocle
ICA

MFA cellTree
maptpx

reCAT Angle

SCORPIUS Embeddr Monocle
ICA

Slingshot SLICE PAGA TreecellTree
maptpx

MFA

PAGA Tree Slingshot MERLoT

RaceID /
StemID

PAGA Tree Monocle
ICA

PAGA pCreode

PAGA RaceID /
StemID

PAGA RaceID /
StemID

1

2

3

4

5

6

7

8

9

10

11

12

0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

Likelihood of obtaining a top model Likelihood of obtaining a top model

N
u

m
b

e
r

o
f

m
e
th

o
d

s

Number of methods 1 2 3 4 5 6a b

Figure 3.6: Complementarity between different trajectory inference methods. a, We assessed
the likelihood for different combinations of methods to lead to a ‘top model’ (defined as a model
with an overall score of at least 95% of the best model) when applied to all datasets. b, The
likelihood for different combinations of methods to lead to a ‘top model’ was assessed separately
on different trajectory types. For this figure, we did not include any methods requiring a cell
grouping or a time course as prior information.

Page 97

dynbenchmark: A comparison of single-cell trajectory inference methods.

3
10

100
1k

10k
100k

1M

fe
at

ur
es

1010
0 1k10

k
10

0k1M

cells

10
100

1k
10k

100k
1M

1010
0 1k10

k
10

0k1M
10

100
1k

10k
100k

1M

1010
0 1k10

k
10

0k1M
10

100
1k

10k
100k

1M

1010
0 1k10

k
10

0k1M
10

100
1k

10k
100k

1M

1010
0 1k10

k
10

0k1M
10

100
1k

10k
100k

1M

1010
0 1k10

k
10

0k1M

10
100

1k
10k

100k
1M

1010
01k10

k
10

0k1M

10
100

1k
10k

100k
1M

1010
01k10

k
10

0k1M

10
100

1k
10k

100k
1M

1010
01k10

k
10

0k1M

10
100

1k
10k

100k
1M

1010
01k10

k
10

0k1M

10
100

1k
10k

100k
1M

1010
01k10

k
10

0k1M

10
100

1k
10k

100k
1M

1010
01k10

k
10

0k1M

1s

8m

2d

PAGA
Observed time

Slingshot
Observed time

ElPiGraph
Observed time

Monocle DDRTree
Observed time

ouija
Observed time

Predicted time Predicted time Predicted time Predicted time Predicted time Predicted time

MST
Observed time

 <1s

 42m

 4m

 26m

 46m

 8m

 2m

 <1s

 14s

 45s

 1m

 40s

 1m

 2m

 12s

 1h

 32m

 36s

 1h

 7m

 6m

 19m

 28m

 5s

23h

 1m

 41s

 49s

 2m

 3m

3d

 6m

 8m

>7d

 13s

 2h

 13m

 3m

 16m

 2m

 29s
 21s

 26m

 18s

 7m

 1m

 7s

 1m

 309MB

 1GB

 317MB

 2GB

 988MB

 532MB

 459MB

 340MB

 985MB

 569MB

 615MB

 583MB

 811MB

 6GB

 755MB

 474MB

 1GB

 2GB

 871MB

 2GB

 5GB

 3GB

 2GB

 356MB

 3GB

 643MB

 477MB

 486MB

 2GB

 832MB

 3GB

 2GB

 4GB

10GB

 512MB

 2GB

 542MB

15GB

 913MB

 2GB

 797MB
 600MB

 1GB

 482MB

 578MB

 425MB

 401MB

 423MB

1s 1m 1h 23h Cells Features 100MB 1GB 10GBCells Features

SCIMITAR
pseudogp

ouija
SCOUP

MERLoT
GPfates

cellTree Gibbs
CALISTA

GrandPrix
Mpath

topslam
CellTrails

Monocle ICA
SLICE

SCUBA
cellTree maptpx

reCAT
URD
MFA

RaceID / StemID
Monocle DDRTree

CellRouter
Sincell

PhenoPath
cellTree VEM

SLICER
pCreode

FateID
ElPiGraph
Embeddr

Wishbone
ouijaflow

Wanderlust
PAGA Tree

ElPiGraph cycle
PAGA

ElPiGraph linear
MATCHER

Slingshot
STEMNET

TSCAN
DPT

SCORPIUS
FORKS

Waterfall
MST

Angle
Component 1

SCIMITAR
pseudogp

ouija
SCOUP

MERLoT
GPfates

cellTree Gibbs
CALISTA

GrandPrix
Mpath

topslam
CellTrails

Monocle ICA
SLICE

SCUBA
cellTree maptpx

reCAT
URD
MFA

RaceID / StemID
Monocle DDRTree

CellRouter
Sincell

PhenoPath
cellTree VEM

SLICER
pCreode

FateID
ElPiGraph
Embeddr

Wishbone
ouijaflow

Wanderlust
PAGA Tree

ElPiGraph cycle
PAGA

ElPiGraph linear
MATCHER

Slingshot
STEMNET

TSCAN
DPT

SCORPIUS
FORKS

Waterfall
MST

Angle
Component 1

Average time Time scalability Average max memory Memory scalability

<linear linear quadratic >quadratic

a

b

Figure 3.7: Scalability of trajectory inference methods. a Three examples of average observed
running times across five datasets (left) and the predicted running time (right). b Overview of
the scalability results of all methods, ordered by their average predicted running time from (a).
We predicted execution times and memory usage for each method with increasing number of
features or cells, and used these values to classify each method into sublinear, linear, quadratic
and superquadratic based on the shape of the curve.

Page 98

3

dynbenchmark: A comparison of single-cell trajectory inference methods.

Figure 3.8: Agreement between actual values and predictions for execution times and memory
usage. We created a predictive model of the running time and memory usage based on a set
of scaling datasets (left), and validated this model based on the similarity of the predictions and
actual values on all benchmark datasets (right). Shown are the values for each method and
dataset (n = 65618 for training, n = 11939 for test). Top left indicates the Pearson correlation
coefficient.

Page 99

dynbenchmark: A comparison of single-cell trajectory inference methods.

3

C
A

L
IS

T
A

C
e
llR

o
u

te
r

C
e
llT

ra
ils

c
e
llT

re
e

D
P

T

E
lP

iG
ra

p
h

.R

E
m

b
e

d
d

r

F
a
te

ID

F
O

R
K

S

G
P

fa
te

s

G
ra

n
d

P
ri
x

M
A

T
C

H
E

R

M
E

R
L
oT

M
F
A

M
o

n
o

c
le

M
p

a
th

O
u

ija

O
u

ija
fl
o
w

P
A

G
A

p
-C

re
o

d
e

P
h

e
n

o
P

a
th

P
se

u
d

o
g

p

R
a

c
e

ID
 /

 S
te

m
ID

re
C

A
T

S
C

IM
IT

A
R

S
C

O
R

P
IU

S

S
C

O
U

P

S
C

U
B

A

S
in

c
e
ll

S
L

IC
E

S
L

IC
E

R

S
lin

g
sh

o
t

S
T

E
M

N
E

T

T
o

p
sl

a
m

T
S

C
A

N

U
R

D

W
is

h
b

o
n

e

W
a
te

rf
a

ll

A
va

ila
b

ili
ty

B
e
h

a
vi

o
u

r
C

o
d

e
 a

ss
u

ra
n

c
e

C
o

d
e

 q
u

a
lit

y
D

o
cu

m
e

n
ta

tio
n

P
a

p
e

r

The code can be easily installed
through a repository such as CRAN,
Bioconductor, PyPI, CPAN, debian

packages, ...

The tool can be run using a
graphical user interface, either

locally or on a web server

Package contains dummy proofing,
i.e. testing whether the

parameters and data supplied by
the user make sense and are useful

Method is tested using unit tests

Tests are run automatically using
functionality from the programming

language

The method uses continuous
integration, for example on Travis

CI

The code coverage of the
repository is assessed.

What is the percentage of code
coverage

The repository separates the
development code from master code,

for example using git master en
developer branches

The repository has created
releases, or several branches

corresponding to major releases.

The repository has branches for
the development of separate

features.

The tutorial showcases the method
on several datasets (1=0, 2=0.5,

>2=1)

The paper quantifies the accuracy
of the method given a gold or

silver standard trajectory

The paper assessed method
robustness (to eg. noise,

subsampling, parameter changes,
stability) in one (0.5) or several

(1) ways

0.00

0.25

0.50

0.75

1.00

Open source

Version control

Packaging

Dependencies

License

Interface

Function and object naming

Code style

Code duplication

Self-contained functions

Plotting

Dummy proofing

Unit testing

Continuous integration

Code coverage

Support

Development model

Tutorial

Function documentation

Inline documentation

Parameter transparency

Seed setting

Unexpected output

Trajectory format

Prior information

Publishing

Peer review

Evaluation on real data

Evaluation of robustness

S
lin

gs
ho

t
C

el
lT

ra
ils

S
C

O
R

P
IU

S
D

P
T

P
se

ud
og

p
M

AT
C

H
E

R
P

he
no

P
at

h
M

FA
p-

C
re

od
e

M
on

oc
le

To
ps

la
m

W
is

hb
on

e
O

ui
ja

P
A
G

A

R
ac

eI
D

 /
S

te
m

ID
U

R
D

G
ra

nd
P

rix
T
S

C
A

N
ce

llT
re

e
E

m
be

dd
r

S
C

U
B

A
Fa

te
ID

S
C

O
U

P
O

ui
ja

flo
w

S
LI

C
E

R
G

P
fa

te
s

S
T
E

M
N

E
T

M
E

R
Lo

T
S

C
IM

IT
A

R
S

LI
C

E
M

pa
th

C
el

lR
ou

te
r

S
in

ce
ll

E
lP

iG
ra

ph
.R

re
C

AT
F
O

R
K
S

C
A

LI
S
TA

W
at

er
fa

ll

0.4 0.6 0.8

Usability score

Score
0.00 0.25 0.50 0.75 1.00 0.0 0.5 1.0

Average usability score

Figure 3.9: Usability of trajectory inference methods. Shown is the score given for each method
on every item from the usability score sheet(Table 3.1). Each aspect of the quality control was
part of a category, and each category was weighted so that it contributed equally to the final
quality score. Within each category, each aspect also received a weight depending on how often
it was mentioned in a set of papers discussing good practices in tool development and evaluation.
This is represented in the plot as the height on the y-axis. Top: Average usability score for each
method. Right: The average score of each quality control item. Shown into more detail are
those items which had an average score lower than 0.5.

Page 100

3

dynbenchmark: A comparison of single-cell trajectory inference methods.

guidelines.dynverse.org

Do you expect
multiple

disconnected
trajectories?

≤ Disconnected

 ≤ Tree

Tree

Do you expect
a particular
topology?

Do you expect
cycles in the

topology?

Do you expect a
tree with two or

more bifurcations?

Linear

Bifurcation

Cycle

Multifurcation

Yes / I don't know

No

Yes

No /
I don't know

Yes / I don't know

Confirm
expectations

using a method
with free topology

Confirm results
using at least

2 methods

No
No

Yes

≤ Graph

Check out the
interactive

guidelines at

Free topology

Fixed topology

Figure 3.10: Practical guidelines for method users. As the performance of a method mostly
depends on the topology of the trajectory, the choice of TI method will be primarily influenced
by the user’s existing knowledge about the expected topology in the data. We therefore devised
a set of practical guidelines, which combines the method’s performance, user friendliness and the
number of assumptions a user is willing to make about the topology of the trajectory. Methods
to the right are ranked according to their performance on a particular (set of) trajectory type.
Further to the right are shown the accuracy (+: scaled performance ≥ 0.9, ±: >0.6), usability
scores (+:≥0.9, ± ≥0.6), estimated running times and required prior information. k, thousands;
m, millions.

Page 101

dynbenchmark: A comparison of single-cell trajectory inference methods.

3

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●●

●
●

●

●

●

●●

●

●

●●●
●

●

●

●●
●

●●
●

●●
●

● ●

●
●

●
●

●

●●

●

● ●
●

●

●

●

●

●

●
●

●●

●●

●●
●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●● ●

●

●●

●

● ●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●
●●

●

●●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●●

●
● ●

●

●
●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●●

●
●

●

●

●

●●

●

●

●●●
●

●

●

●●

●

●●
●

●●
●

● ●

●

●
●

●

●

●●

●

● ●
●

●

●

●

●

●

●
●

●●

●●

●●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●● ●

●

●
●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●●

●
●

●

●

●

●●

●

●

●●●
●

●

●

●●

●

●●
●

●●
●

● ●

●

●
●

●

●

●●

●

● ●
●

●

●

●

●

●

●
●

●●

●●

●●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●● ●

●

●
●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●●

●
●

●

●

●

●●

●

●

●●●
●

●

●

●●

●

●●
●

●●
●

● ●

●

●
●

●

●

●●

●

● ●
●

●

●

●

●

●

●
●

●●

●●

●●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●● ●

●

●
●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●●

●
●

●

●

●

●●

●

●

●●●
●

●

●

●●

●

●●
●

●●
●

● ●

●

●
●

●

●

●●

●

● ●
●

●

●

●

●

●

●
●

●●

●●

●●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●● ●

●

●
●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●●

●
●

●

●

●

●●

●

●

●●●
●

●

●

●●

●

●●
●

●●
●

● ●

●

●
●

●

●

●●

●

● ●
●

●

●

●

●

●

●
●

●●

●●

●●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●● ●

●

●
●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●

●

● ●

●

●
●
●

●

●
●

●
●● ●●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●●●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
● ●●

●

●

●

●

●●

●

●

●

●

● ●
●

●
●

●

●● ●● ●

●

●●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●

●

●

●●
●

●
●

●
●● ●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●
● ●

●●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●●
●

●

●●
●

●

● ● ●

●
●

●

●
●●●

●

●
●

●
●●●●

●

●

●
● ●●

●

●●

●

●

●●

●
●
●

●

●

●
●

●

●
●

●●
●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●●

●
●

●

●

●

●●

●

●

●●●
●

●

●

●●

●

●●
●

●●
●

● ●

●

●
●

●

●

●●

●

● ●
●

●

●

●

●

●

●
●

●●

●●

●●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●● ●

●

●
●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●●

●
●

●

●

●

●●

●

●

●●●
●

●

●

●●

●

●●
●

●●
●

● ●

●

●
●

●

●

●●

●

● ●
●

●

●

●

●

●

●
●

●●

●●

●●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●● ●

●

●
●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●●

●
●

●

●

●

●●

●

●

●●●
●

●

●

●●

●

●●
●

●●
●

● ●

●

●
●

●

●

●●

●

● ●
●

●

●

●

●

●

●
●

●●

●●

●●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●● ●

●

●
●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●
●

●

●

●●●●●

●

(consensus)

CDP MDP PreDC

Reference Component 1 TSCAN Waterfall Monocle ICA Slingshot PAGASCORPIUS

●
●

●

●
●

●

●
● ●

●
● ●●●

●

●●
●

●
●

●

●

●

●●
● ●● ●

●
●●●●

●

●
● ●

●
●

●
●●

●●

●●

●

●
●

●
●

●● ●

●

●
●

●●●

●

●●
●
●

●
●●

●●
●

●

●
●●●●

●●
●

●● ●● ●●●●●●●●● ●●●●● ●
●●

●
●●●●●●● ●

●●●●●●●
●
●

●
● ●● ●●

●
●

●● ●●●●●●
●

● ●●
● ●●●●●●●●●●● ●

●

● ●

●● ●●

●
●

●
●

●●●
●●

●
●

●

●
●
●●

●

●●
●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●●●●

●

●

●

●●●●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●●●
●

●

●●

●

●

●●
●

●

●

●● ●

●

●

●

●

●

●
●

●
●

●●●

●

● ●

●

●

●
● ●●

●

●
●●

●

●● ●●
●
●

●

●

●
●●

●

●
●

●

● ●●

●
●

●

●

●
●

●

●●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●
●

●●

●
●

●

●

●

●

●
●

●
●

●●

●

●
●

●
●●●●●

●

●●
●●●

●
●

●

●
●

●

●

●
●

●
●

●●●

●

●●
●

●
●

●

●

●

●●
● ●● ●

●

●●●●

●

●
● ●

●

●

●
●●

●●

●
●

●

●
●

●
●

●
● ●

●

●

●
●●●

●

●●
●
●

●
●

●

●●
●

●

●

●●●●

●●

●

●● ●●
●●

●
●●●●●● ●●●●● ●

● ●
●

●
●●●●
●
●

●
●●●●●●●

●
●

●
● ●● ●●

●
●

●● ●●● ●●●
●

● ●●
● ●●●●●●●●●●● ●

●

● ●

●● ●
●

●
●

●
●

●●●
●●

●
●

●

●

●
●●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●
● ●

●

●

●

●●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●
●●

●

●

●●

●

●

●●
●

●

●

●● ●

●

●

●

●

●

●
●

●
●

●●●

●

● ●

●

●

●
● ●

●

●

●
●●

●

●●
●●

●
●

●

●

●
●

●
●

●

●
●

● ●●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●
●●

●
●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●●
●●●

●

●●

●●●

●
●

●

●
●

●

●

●
●

●
●

●●●

●

●●
●

●
●

●

●

●

●●
● ●● ●

●

●●●●

●

●
● ●

●

●

●
●●

●●

●
●

●

●
●

●
●

●
● ●

●

●

●
●●●

●

●●
●
●

●
●

●

●●
●

●

●

●●●●

●●

●

●● ●●
●●

●
●●●●●● ●●●●● ●

● ●
●

●
●●●●
●
●

●
●●●●●●●

●
●

●
● ●● ●●

●
●

●● ●●● ●●●
●

● ●●
● ●●●●●●●●●●● ●

●

● ●

●● ●
●

●
●

●
●

●●●
●●

●
●

●

●

●
●●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●
● ●

●

●

●

●●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●
●●

●

●

●●

●

●

●●
●

●

●

●● ●

●

●

●

●

●

●
●

●
●

●●●

●

● ●

●

●

●
● ●

●

●

●
●●

●

●●
●●

●
●

●

●

●
●

●
●

●

●
●

● ●●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●
●●

●
●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●●
●●●

●

●●

●●●

●
●

●
●●

●

●

●
●

●

●
●

●

●

●
●

●
●

●●●

●

●●
●

●
●

●

●

●

●●
● ●● ●

●

●●●●

●

●
● ●

●

●

●
●●

●●

●
●

●

●
●

●
●

●
● ●

●

●

●
●●●

●

●●
●
●

●
●

●

●●
●

●

●

●●●●

●●

●

●● ●●
●●

●
●●●●●● ●●●●● ●

● ●
●

●
●●●●
●
●

●
●●●●●●●

●
●

●
● ●● ●●

●
●

●● ●●● ●●●
●

● ●●
● ●●●●●●●●●●● ●

●

● ●

●● ●
●

●
●

●
●

●●●
●●

●
●

●

●

●
●●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●
● ●

●

●

●

●●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●
●●

●

●

●●

●

●

●●
●

●

●

●● ●

●

●

●

●

●

●
●

●
●

●●●

●

● ●

●

●

●
● ●

●

●

●
●●

●

●●
●●

●
●

●

●

●
●

●
●

●

●
●

● ●●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●
●●

●
●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●●
●●●

●

●●

●●●

● ●

●

●

●
●

●●
●

●
●

●
●

●

●

●
●

●
●

●●●

●

●●
●

●
●

●

●

●

●●
● ●● ●

●

●●●●

●

●
● ●

●

●

●
●●

●●

●
●

●

●
●

●
●

●
● ●

●

●

●
●●●

●

●●
●
●

●
●

●

●●
●

●

●

●●●●

●●

●

●● ●●
●●

●
●●●●●● ●●●●● ●

● ●
●

●
●●●●
●
●

●
●●●●●●●

●
●

●
● ●● ●●

●
●

●● ●●● ●●●
●

● ●●
● ●●●●●●●●●●● ●

●

● ●

●● ●
●

●
●

●
●

●●●
●●

●
●

●

●

●
●●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●
● ●

●

●

●

●●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●
●●

●

●

●●

●

●

●●
●

●

●

●● ●

●

●

●

●

●

●
●

●
●

●●●

●

● ●

●

●

●
● ●

●

●

●
●●

●

●●
●●

●
●

●

●

●
●

●
●

●

●
●

● ●●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●
●●

●
●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●●
●●●

●

●●

●●●

● ●

●

●

●
●

●

●
●

●

●

●
●

●
●

●●●

●

●●
●

●
●

●

●

●

●●
● ●● ●

●

●●●●

●

●
● ●

●

●

●
●●

●●

●
●

●

●
●

●
●

●
● ●

●

●

●
●●●

●

●●
●
●

●
●

●

●●
●

●

●

●●●●

●●

●

●● ●●
●●

●
●●●●●● ●●●●● ●

● ●
●

●
●●●●
●
●

●
●●●●●●●

●
●

●
● ●● ●●

●
●

●● ●●● ●●●
●

● ●●
● ●●●●●●●●●●● ●

●

● ●

●● ●
●

●
●

●
●

●●●
●●

●
●

●

●

●
●●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●
● ●

●

●

●

●●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●
●●

●

●

●●

●

●

●●
●

●

●

●● ●

●

●

●

●

●

●
●

●
●

●●●

●

● ●

●

●

●
● ●

●

●

●
●●

●

●●
●●

●
●

●

●

●
●

●
●

●

●
●

● ●●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●
●●

●
●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●●
●●●

●

●●

●●●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●●●

●

●●
●

●
●

●

●

●

●●
● ●● ●

●

●●●●

●

●
● ●

●

●

●
●●

●●

●
●

●

●
●

●
●

●
● ●

●

●

●
●●●

●

●●
●
●

●
●

●

●●
●

●

●

●●●●

●●

●

●● ●●
●●

●
●●●●●● ●●●●● ●

● ●
●

●
●●●●
●
●

●
●●●●●●●

●
●

●
● ●● ●●

●
●

●● ●●● ●●●
●

● ●●
● ●●●●●●●●●●● ●

●

● ●

●● ●
●

●
●

●
●

●●●
●●

●
●

●

●

●
●●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●
● ●

●

●

●

●●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●
●●

●

●

●●

●

●

●●
●

●

●

●● ●

●

●

●

●

●

●
●

●
●

●●●

●

● ●

●

●

●
● ●

●

●

●
●●

●

●●
●●

●
●

●

●

●
●

●
●

●

●
●

● ●●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●
●●

●
●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●●
●●●

●

●●

●●●

● ●

●

●

●
●

●

●
●

●

●

●
●

●
●

●●●

●

●●
●

●
●

●

●

●

●●
● ●● ●

●

●●●●

●

●
● ●

●

●

●
●●

●●

●
●

●

●
●

●
●

●
● ●

●

●

●
●●●

●

●●
●
●

●
●

●

●●
●

●

●

●●●●

●●

●

●● ●●
●●

●
●●●●●● ●●●●● ●

● ●
●

●
●●●●
●
●

●
●●●●●●●

●
●

●
● ●● ●●

●
●

●● ●●● ●●●
●

● ●●
● ●●●●●●●●●●● ●

●

● ●

●● ●
●

●
●

●
●

●●●
●●

●
●

●

●

●
●●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●
● ●

●

●

●

●●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●
●●

●

●

●●

●

●

●●
●

●

●

●● ●

●

●

●

●

●

●
●

●
●

●●●

●

● ●

●

●

●
● ●

●

●

●
●●

●

●●
●●

●
●

●

●

●
●

●
●

●

●
●

● ●●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●
●●

●
●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●●
●●●

●

●●

●●●

●
●

●

●
●

●
●

●
●

●

●

●
●

●
●

●●●

●

●●
●

●
●

●

●

●

●●
● ●● ●

●

●●●●

●

●
● ●

●

●

●
●●

●●

●
●

●

●
●

●
●

●
● ●

●

●

●
●●●

●

●●
●
●

●
●

●

●●
●

●

●

●●●●

●●

●

●● ●●
●●

●
●●●●●● ●●●●● ●

● ●
●

●
●●●●
●
●

●
●●●●●●●

●
●

●
● ●● ●●

●
●

●● ●●● ●●●
●

● ●●
● ●●●●●●●●●●● ●

●

● ●

●● ●
●

●
●

●
●

●●●
●●

●
●

●

●

●
●●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●
● ●

●

●

●

●●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●
●●

●

●

●●

●

●

●●
●

●

●

●● ●

●

●

●

●

●

●
●

●
●

●●●

●

● ●

●

●

●
● ●

●

●

●
●●

●

●●
●●

●
●

●

●

●
●

●
●

●

●
●

● ●●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●
●●

●
●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●●
●●●

●

●●

●●●

●

●
●

●
●

●
●

●

●

●
●

●
●

●●●

●

●●
●

●
●

●

●

●

●●
● ●● ●

●

●●●●

●

●
● ●

●

●

●
●●

●●

●
●

●

●
●

●
●

●
● ●

●

●

●
●●●

●

●●
●
●

●
●

●

●●
●

●

●

●●●●

●●

●

●● ●●
●●

●
●●●●●● ●●●●● ●

● ●
●

●
●●●●
●
●

●
●●●●●●●

●
●

●
● ●● ●●

●
●

●● ●●● ●●●
●

● ●●
● ●●●●●●●●●●● ●

●

● ●

●● ●
●

●
●

●
●

●●●
●●

●
●

●

●

●
●●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●
● ●

●

●

●

●●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●
●●

●

●

●●

●

●

●●
●

●

●

●● ●

●

●

●

●

●

●
●

●
●

●●●

●

● ●

●

●

●
● ●

●

●

●
●●

●

●●
●●

●
●

●

●

●
●

●
●

●

●
●

● ●●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●
●●

●
●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●●
●●●

●

●●

●●●●

●●●

●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●●●

●

●●
●

●
●

●

●

●

●●
● ●● ●

●
●●●

●

●
● ●

●

●

●
●●

●●

●
● ●

●
●
●

●
●

●

●

●
●●

●

●●
●
●

●
●

●

●●
●

●

●●●

●●

●

●● ●●
●●

●
●●●●●● ●●●●● ●

● ●
●

●
●●●●
●
●

●
●●●●●●●

●
●

●
● ●● ●●

●
●

●● ●●● ●●●
●

● ●● ●●●●●●●●●●● ●
●

● ●

●● ●
●

●
●

●
●

●●●
●●

●
●

●

●

●
●●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
● ●

●

●

●

●●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●
●●

●

●

●●

●

●

●●
●

●

●

●● ●

●

●

●

●

●

●

●
●

●●●

●

● ●
●

●
● ●

●

●

●
●●

●

●●
●●

●
●

●

●

●
●
●

●
●

● ●●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
● ●

●

●
●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●●
●●●

●

●●
●●

●●●
●● ●

●

●

●

●

●

●●●●

●

(consensus)

d2_induced d2_intermediate d5_earlyiN d5_intermediate MEF Myocyte Neuron

Reference pCreode PAGA Slingshot DPT SCUBA Monocle DDRTree RaceID / StemIDMST

●

●
●

●

●

●●
●

● ●

●

●
●

●

●
●

● ●
●

●
●

●

●

●

●●

●●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

● ●

●
●

●

●
●●

●

●

● ●●
● ●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●

●●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●
●

●
●

●

●
●

●

●

● ●

● ●●●

●

●

●

●

● ●

●
●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●●
●

●
●

●

●

●

●
●

●●

●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

● ●

●●

●

●

● ●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
● ●

●
●

●●

●

●

●

●
●●

●

●

●

●●

●

●
●

●

● ●● ●
●

●
●

●
●

●

●

●

●●

●

●

●

●●

●

●
●

●

●●
●

●

●

●

●●

●

●

● ●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●
●
●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

● ●

●

● ●●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●
●

● ●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●
●

●

●

●

●
●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●

●
●

●●
●

● ●

●●

●

●

●

●●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●● ●

● ●

●

●

●
●
●

●

●● ●

●

●
●

●

● ●

●

●

●

●
● ●

●●

●

● ●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●

●●
●

●

●

● ●

●●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●
●

●

● ●

●

● ●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
● ●

●

●

●

●
●

●

●●●●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●
●

●

● ●●
●● ●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●●●

●●

●●

●

●
●

●

●

●●
●

● ●

●

●
●

●

●
●

● ●

●

●
●

●

●

●

●●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

● ●

●
●

●

●

●●

●

●

● ●●
● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

● ●●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●●
●

●
●

●

●

●

●
●

●●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

● ●

●●

●

●

● ●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
● ●

●
●

●●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

● ●● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●
●

●

●●
●

●

●

●

●●

●

●

● ●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●
●

● ●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●

●
●

●●
●

● ●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●
●

●

●

●
●

●

●

●● ●

●

●
●

●

●
●

●

●

●

●
●

●
● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●
●

●

● ●●
●● ●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●●

●

●
●

●

●

●●
●

● ●

●

●
●

●

●
●

● ●

●

●
●

●

●

●

●●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

● ●

●
●

●

●

●●

●

●

● ●●
● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

● ●●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●●
●

●
●

●

●

●

●
●

●●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

● ●

●●

●

●

● ●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
● ●

●
●

●●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

● ●● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●
●

●

●●
●

●

●

●

●●

●

●

● ●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●
●

● ●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●

●
●

●●
●

● ●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●
●

●

●

●
●

●

●

●● ●

●

●
●

●

●
●

●

●

●

●
●

●
● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●
●

●

● ●●
●● ●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●●

●
●
●
●

●●●●

●
●●

●●●●●
●

●
●

●

●

●●
●

● ●

●

●
●

●

●
●

● ●

●

●
●

●

●

●

●●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

● ●

●
●

●

●

●●

●

●

● ●●
● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

● ●●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●●
●

●
●

●

●

●

●
●

●●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

● ●

●●

●

●

● ●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
● ●

●
●

●●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

● ●● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●
●

●

●●
●

●

●

●

●●

●

●

● ●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●
●

● ●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●

●
●

●●
●

● ●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●
●

●

●

●
●

●

●

●● ●

●

●
●

●

●
●

●

●

●

●
●

●
● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●
●

●

● ●●
●● ●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●●

●

●●

●
●

●

●

●

●

●

●●

●

●

●●●

●●

●●

●

●

●

●

●●

●●

●

●
●

●

●

●●
●

● ●

●

●
●

●

●
●

● ●

●

●
●

●

●

●

●●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

● ●

●
●

●

●

●●

●

●

● ●●
● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

● ●●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●●
●

●
●

●

●

●

●
●

●●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

● ●

●●

●

●

● ●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
● ●

●
●

●●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

● ●● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●
●

●

●●
●

●

●

●

●●

●

●

● ●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●
●

● ●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●

●
●

●●
●

● ●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●
●

●

●

●
●

●

●

●● ●

●

●
●

●

●
●

●

●

●

●
●

●
● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●
●

●

● ●●
●● ●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

● ●

●

●
●

●

●
●

● ●

●

●
●

●

●

●

●●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

● ●

●
●

●

●

●●

●

●

● ●●
● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

● ●●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●●
●

●
●

●

●

●

●
●

●●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

● ●

●●

●

●

● ●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
● ●

●
●

●●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

● ●● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●
●

●

●●
●

●

●

●

●●

●

●

● ●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●
●

● ●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●

●
●

●●
●

● ●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●
●

●

●

●
●

●

●

●● ●

●

●
●

●

●
●

●

●

●

●
●

●
● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●
●

●

● ●●
●● ●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●●

●

●

(consensus)

Reference RaceID / StemID PAGA MST

●
● ●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●
●

●●

●●

●

●

●

●

●
●

●

●●

● ●

●
●

●
●

●●

●

● ●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
● ●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●●

●●

●

●

●

●

●
●

●

●
●

● ●

●
●

●
●

●●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
● ●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●●

●●

●

●

●

●

●
●

●

●
●

● ●

●
●

●
●

●●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●
● ●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●●

●●

●

●

●

●

●
●

●

●
●

● ●

●
●

●
●

●●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●●

●●

●

●

●

●

●
●

●

●
●

● ●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●●
●●

●
●

●
● ●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●●

●●

●

●

●

●

●
●

●

●
●

● ●

●
●

●
●

●●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●●●●

●

(consensus)

Reference Angle RaceID / StemID PAGA

c d

a

b

Figure 3.11: Demonstration of how a common framework for TI methods facilitates broad
applicability using some example datasets. Trajectories inferred by each method were projected
to a common dimensionality reduction using multidimensional scaling. For each dataset, we also
calculated a ‘consensus’ prediction, by calculating the cordist between each pair of models and
picking the model with the highest score on average. a, The top methods applied on a dataset
containing a linear trajectory of differentiation dendritic cells, going from MDP, CDP to PreDC.
b, The top methods applied on a dataset containing a bifurcating trajectory of reprogrammed
fibroblasts. c, A synthetic dataset generated by dyntoy, containing four disconnected trajectories.
d, A synthetic dataset generated by dyngen, containing a cyclic trajectory.

Page 102

3

dynbenchmark: A comparison of single-cell trajectory inference methods.

d e

b

a
W

X

Y Z

2

3 4
c

Milestone network

from
W
X
X

to
X
Y
Z

length
2
3
4

Branch assignment
Represented by the milestone percentages

cell
a
a
b
b
c
c
d
d
d
e
e
e

milestone
W
X
W
X
X
Z
X
Y
Z
X
Y
Z

percentage
0.9
0.1
0.2
0.8
0.8
0.2
0.2
0.7
0.1
0.3
0.2
0.5

Cell positionsRegions of delayed
commitment
region

XYZ
XYZ
XYZ

to
X
Y
Z

is_begin
TRUE
FALSE
FALSE

Figure 3.12: An example trajectory that will be used throughout this section. It contains
contains four milestones (W to Z) and five cells (a to e).

Page 103

dynbenchmark: A comparison of single-cell trajectory inference methods.

3

A

B

C

D

E

F

A

B

C D

E F

A

B

C

F

D E

A

B

C

E F

D

A

B

C

D

E A

B

D

E
C

A

B
C

D

E
F

linear bifurcation multifurcating tree cycle connected disconnected

1

0.67

0.5

0.4

0.67

0.5

0.5

0.67

1

0.8

0.67

0.5

0.8

0.4

0.5

0.8

1

0.57

0.4

0.67

0.33

0.4

0.67

0.57

1

0.33

0.57

0.57

0.67

0.5

0.4

0.33

1

0.8

0.8

0.5

0.8

0.67

0.57

0.8

1

0.67

0.5

0.4

0.33

0.57

0.8

0.67

1

1

0.6

0.39

0.38

0.32

0.48

0.46

0.6

1

0.72

0.6

0.32

0.55

0.43

0.39

0.72

1

0.71

0.25

0.51

0.28

0.38

0.6

0.71

1

0.33

0.62

0.49

0.32

0.32

0.25

0.33

1

0.59

0.43

0.48

0.55

0.51

0.62

0.59

1

0.61

0.46

0.43

0.28

0.49

0.43

0.61

1

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

edgeflip HIM isomorphic

Li
ne

ar

Bifu
rc

at
io
n

M
ul
tif
ur

ca
tin

g
Tr

ee

C
yc

le

C
on

ne
ct
ed

D
is
co

nn
ec

te
d

Li
ne

ar

Bifu
rc

at
io
n

M
ul
tif
ur

ca
tin

g
Tr

ee

C
yc

le

C
on

ne
ct
ed

D
is
co

nn
ec

te
d

Li
ne

ar

Bifu
rc

at
io
n

M
ul
tif
ur

ca
tin

g
Tr

ee

C
yc

le

C
on

ne
ct
ed

D
is
co

nn
ec

te
d

Disconnected

Connected

Cycle

Tree

Multifurcating

Bifurcation

Linear

0.00

0.25

0.50

0.75

1.00

Score

1

1

1

0.67

0.81

0

0.67

0.61

0

0.67

0.57

0

edgeflip

HIM

isomorphic

Reference Very short extra edges Short extra edges Long extra edges

a

b

c

Figure 3.13: Showcase of three metrics to evaluate topologies: isomorphic, edgeflip and HIM
(a) The used topologies. (b) The scores when comparing each pair of trajectory types. (c) Four
datasets in which aan extra edge is added and made progressively longer. This shows how the
HIM can take into account edge lengths.

Page 104

3

dynbenchmark: A comparison of single-cell trajectory inference methods.

M1

M2

M3

M4

M5

M6

grouping
M1

M2

M3

M4

M5

M6

grouping
M1->M3

M3->M2

M3->M5

M5->M4

M5->M6

Reference Cells mapped to milestones Cells mapped to branches

Figure 3.14: Mapping cells to their closest milestone or branch for the calculation of the
F1milestones and F1branches . To calculate the F1milestones, cells are mapped towards the nearest
milestone, i.e. the milestone with the highest milestone percentage. For the F1branches, the cells
are mapped to the closest edge.

d e

b

a
W

X

Y Z

2

3 4
c

Milestone network
from

W
X
X

to
X
Y
Z

length
2
3
4

Milestone percentages
cell
a
a
b
b
c
c
d
d
d
e
e
e

milestone
W
X
W
X
X
Z
X
Y
Z
X
Y
Z

percentage
0.9
0.1
0.2
0.8
0.8
0.2
0.2
0.7
0.1
0.3
0.2
0.5

Region of delayed
commitment
region

XYZ
XYZ
XYZ

to
X
Y
Z

is_begin
TRUE
FALSE
FALSE

a b

c d(a, b)
d(a, c)
d(b, c)
d(a, d)
d(b, d)
d(c, d)
d(a, e)
d(b, e)
d(c, e)
d(d, e)

a b c d e
a

b
c

d
e

d= 2 × (0.9 - 0.2) = 1.4
= 2 × 0.9 + 4 × 0.2 = 2.6
= 2 × 0.2 + 4 × 0.2 = 1.2
= 2 × 0.9 + 3 × 0.7 + 4 × 0.1 = 4.3
= 2 × 0.2 + 3 × 0.7 + 4 × 0.1 = 2.9
= 3 × (0.7 - 0) + 4 × (0.2 - 0.1) = 2.5
= 2 × 0.9 + 3 × 0.2 + 4 × 0.5 = 4.4
= 2 × 0.2 + 3 × 0.2 + 4 × 0.5 = 3.0
= 3 × (0.2 - 0) + 4 × (0.5 - 0.2) = 1.8
= 3 × (0.7 - 0.2) + 4 × (0.5 - 0.1) = 3.1 Geodesic distance

Figure 3.15: The calculation of geodesic distances on a small example trajectory. a) A toy
example containing four milestones (W to Z) and five cells (a to e). b) The corresponding
milestone network, milestone percentages and regions of delayed commitment, when the toy
trajectory is converted to the common trajectory model. c) The calculations made for calculating
the pairwise geodesic distances. d) A heatmap representation of the pairwise geodesic distances.

Page 105

dynbenchmark: A comparison of single-cell trajectory inference methods.

3

grouping In divergence In milestone On edge

grouping Not waypoint Waypoint

Dataset

Cell positions

Waypoint cells

9s 8s 9s 9s 10s 13s 20s
58s

2m

6m

9

364

1.00

0.66

0.41

0.20

0.06

0.00

2 5 10 20 50 100 200 500 1000 all

cell waypoints

T
im

e
 (

se
c
o
n
d
s)

co
r d

is
t

Shuffle %

0%

20%

40%

60%

80%

100%

a b

Figure 3.16: Determination of cell waypoints a) Illustration of the stratified cell sampling using
an example dataset (top). Each milestone, edge between two milestones and region of delayed
commitment is seen as a collection of cells (middle), and the number of waypoints (100 in this
case) are divided over each of these collection of cells (bottom). b) Accuracy versus time to
calculate cordist. Shown are distributions over 100 random waypoint samples. The upper whisker
of the boxplot extends from the hinge (75% percentile) to the largest value, no further than 1.5×
the IQR of the hinge. The lower whisker extends from the hinge (25% percentile) to the smallest
value, at most 1.5× the IQR of the hinge.

Page 106

3

dynbenchmark: A comparison of single-cell trajectory inference methods.

Bifurcating Binary tree Connected Converging

Cyclic Disconnected Diverging converging Diverging with loops

Linear Looping Multifurcating Tree

Figure 3.17: Determination of cell waypoints. We generated different toy trajectory datasets with
varying topologies and calculated the geodesic distances between all cells within the trajectory.
We then used these distances as input for classical multidimensional scaling. This shows that
the geodesic distances do not only contain information regarding the cell’s positions, but also
information on the lengths and wiring of the topology.

d e

b

a
W

X

Y Z

c

a
b
c
d
e

W
0.9
0.2
0
0
0

X
0.1
0.8
0.8
0.1
0.3

Milestone percentages (matrix)
Y
0
0
0

0.8
0.2

Z
0
0

0.2
0.1
0.5

d
e

b

a
M

N

O

c

a
b
c
d
e

M
0.9
0.2
0
0
0

N
0.1
0.8
0.8
0.5
0.2

O
0
0

0.2
0.5
0.8

Reference

Prediction

a
b
c
d
e

M
0.9
0.2
0
0
0

N
0.1
0.8
0.8
0.5
0.2

O
0
0

0.2
0.5
0.8

Linear regression
or

Random forest

Prediction
Z
0
0

0.2
0.1
0.5

Ẑ
0.1
0.1
0.2
0

0.4

0.1

MSE

Predictionworst

Ẑ
0.3
0.3
0.3
0.3
0.3

MSEworst

0.67

NMSE
1 - 0.1/0.67

Figure 3.18: The calculation of NMSElm distances on a small example trajectory. The milestone
percentages of the reference are predicted based on the milestone percentages of the prediction,
using regression models such as linear regression or random forests. The predicted trajectory
is then scored by comparing the mean-squared error (MSE) of this regression model with the
baseline MSE where the prediction is the average milestone percentage.

Page 107

dynbenchmark: A comparison of single-cell trajectory inference methods.

3

d2_induced

d2_intermediate

d5_earlyiN

d5_intermediate

MEF
Myocyte

Neuron

0.0 2.5 5.0 7.5 10.0

Ascl1 expression

0 2 4 6

Rabepk expression

0 2 4 6 8

Srr expression

0 2 4 6

Bmp7 expression

Ascl1 Rabepk Srr Bmp7

Genes

c

0.0

0.3

0.6

0.9

1.2

im
p
o
rt

a
n
c
e

a

Figure 3.19: An illustration of ranking features based on their importance in a trajectory. (a)
A MDS dimensionality reduction of a real dataset in which mouse embryonic fibroblasts (MEF)
differentiate into Neurons and Myocytes. (b) The ranking of feature importances from high to
low. The majority of features have a very low importance. (c) Some examples, which were
also highlighted in b. Higher features in the ranking are clearly specific to certain parts of the
trajectory, while features lower on the ranking have a more dispersed expression pattern.

10 trees 100 trees 1000 trees 10000 trees

0% 20% 40% 60% 80%100% 0% 20% 40% 60% 80%100% 0% 20% 40% 60% 80%100% 0% 20% 40% 60% 80%100%

0.99
0.97

0.89

0.59

0.27

0.16

Shuffle %

c
o

r f
e

a
tu

re
s

Shuffle %

0%

20%

40%

60%

80%

100%

Figure 3.20: Effect of the number of trees parameter on the accuracy and variability of the
corfeatures. We used the dataset from Figure 3.19 and calculated the corfeatures after shuffling a
percentage of cells.

Page 108

3

dynbenchmark: A comparison of single-cell trajectory inference methods.

0.00

0.25

0.50

0.75

1.00

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Shuffle %

sc
o

re

metric_id

corfeatures

wcorfeatures

Figure 3.21: Effect of weighting the features based on their feature importance in the refer-
ence. We used the same dataset as in Figure 3.19, and calculated the corfeatures after shuffling a
percentage of cells.

0.00

0.25

0.50

0.75

1.00

Easy Difficult Mean Easy
normalised

Difficult
normalised

Mean
normalised

sc
o

re

A decent method

A variable method

Another variable method

A bad method

Figure 3.22: An illustration of how the difficulty of a dataset can influence the overall ranking.
A decent method, which consistently ranks high on an easy and difficult dataset, does not get a
high score when averaging. On the other hand, a method which ranks high on the easy dataset,
but very low on the difficult dataset does get a high score on average. After normalising the
scores (right), this problem disappears.

Page 109

dynbenchmark: A comparison of single-cell trajectory inference methods.

3

0.00

0.05

0.05

0.08

0.10

0.10

0.10

0.15

0.150.20

0.20

0.20

0.25

0.25

0.30

0.35

0.40

0.40

0.40

0.50 0.60

0.70

0.80

0.80

0.80

0.85

0.90

0.90

0.95

1.00

a

a

a

a

a

A b

b

b

b

b

B

bifurcation

bifurcation

c

c

c

c

c

C

D

E

linear

linear

linear

real/gold

real/gold

real/gold

real/silver

real/silver

Normalise

0.14

0.14

0.14

0.14

0.14

0.16

0.19

0.190.21

0.28

0.28

0.37

0.41

0.41

0.50

0.55

0.55

0.55

0.57

0.60

0.80

0.82

0.82

0.82

0.82

0.84

0.86

0.860.87

0.88

a

a

a

a

a

A b

b

b

b

b

B

bifurcation

bifurcation

c

c

c

c

c

C

D

E

linear

linear

linear

real/gold

real/gold

real/gold

real/silver

real/silver

Dataset
id

Trajectory
type

Dataset
source

Method
id

Metric
X

Metric
Y

Dataset
id

Trajectory
type

Dataset
source

Method
id

Metric
X

normalised

Metric
Y

normalised

For each dataset Normalised

Figure 3.23: An example of the normalisation procedure. Shown are some results of a bench-
marking procedure, where every row contains the scores of a particular method (red shading) on
a particular dataset (blue shading), with a trajectory type (green shading) and dataset source
(orange shading).

Page 110

3

dynbenchmark: A comparison of single-cell trajectory inference methods.

0.14

0.14

0.14

0.14

0.14

0.16

0.19

0.190.21

0.28

0.28

0.37

0.41

0.41

0.50

0.55

0.55

0.55

0.57

0.60

0.80

0.82

0.82

0.82

0.82

0.84

0.86

0.860.87

0.88

a

a

a

a

a

A b

b

b

b

b

B

bifurcation

bifurcation

c

c

c

c

c

C

D

E

linear

linear

real/gold

real/gold

real/silver

real/silver

Arithmetic

mean

0.14

0.14 0.14

0.16

0.190.21

0.28

0.28

0.28

0.37

0.38

0.41

0.50

0.55

0.55 0.60

0.80

0.82

0.82

0.84

0.84

0.860.87

0.88

a

a

a

a

b

b

b

b

bifurcation

c

c

c

c

linear

real/gold

real/gold

real/silver

real/silver

Dataset
id

Trajectory
type

Dataset
source

Method
id

Metric
X

normalised

Metric
Y

normalised
Trajectory

type
Dataset
source

Method
id

Metric
X

normalised

Metric
Y

normalised

For each method, trajectory
type and dataset source Aggregated across datasets

0.14

0.14 0.14

0.16

0.190.21

0.28

0.28

0.28

0.37

0.38

0.41

0.50

0.55

0.55 0.60

0.80

0.82

0.82

0.84

0.84

0.860.87

0.88

a

a

a

a

b

b

b

b

bifurcation

c

c

c

c

linear

real/gold

real/gold

real/silver

real/silver

Weighted

arithmetic

mean

0.15

0.18

0.21

0.23

0.400.46

0.55

0.550.71

0.82

0.85 0.85

a

a

b

bbifurcation

c

c

linear

Trajectory
type

Dataset
source

Method
id

Metric
X

normalised

Metric
Y

normalised
Trajectory

type
Method

id

Metric
X

normalised

Metric
Y

normalised

For each method and
trajectory type

Aggregated across dataset
sources

0.15

0.18

0.21

0.23

0.400.46

0.55

0.550.71

0.82

0.85 0.85

a

a

b

bbifurcation

c

c

linear

Arithmetic

mean

0.190.20

0.470.59

0.70 0.84

a

b

c

Trajectory
type

Method
id

Metric
X

normalised

Metric
Y

normalised
Method

id

Metric
X

normalised

Metric
Y

normalised

For each method
Aggregated across trajectory

types

a

b

c

Figure 3.24: An example of the aggregation procedure. In consecutive steps we aggregated
across (a) different datasets with the same source and trajectory type, (b) different dataset
sources with the same trajectory type (weighted for the correlation of the dataset source with
the real gold dataset source) and (c) all trajectory types.

Page 111

dynbenchmark: A comparison of single-cell trajectory inference methods.

3

0.190.20

0.470.59

0.70 0.84

a

b

c

Geometric

mean

0.19 0.190.20

0.47 0.530.59

0.70 0.760.84

a

b

c

Method
id

Metric
X

normalised

Metric
Y

normalised
Method

id

Metric
X

normalised

Metric
Y

normalised
Overall
score

Specific scores Overall score

Figure 3.25: An example of the averaging procedure. For each method, we calculated the
geometric mean between its normalised and aggregated scores

Page 112

3

dynbenchmark: A comparison of single-cell trajectory inference methods.

3.7 References

[1] Amos Tanay and Aviv Regev. “Scaling Single-Cell Genomics fromPhenomenol-

ogy to Mechanism”. In: Nature 541.7637 (Jan. 2017), nature21350. ISSN: 1476-

4687. DOI: 10.1038/nature21350.

[2] Martin Etzrodt, Max Endele, and Timm Schroeder. “Quantitative Single-Cell

Approaches to Stem Cell Research”. In: Cell Stem Cell 15.5 (2014), pp. 546–

558.

[3] Cole Trapnell. “Defining Cell Types and States with Single-Cell Genomics”. In:

Genome Research 25.10 (2015), pp. 1491–1498. ISSN: 15495469. DOI: 10.1101/

gr.190595.115. pmid: 26430159.

[4] Robrecht Cannoodt, Wouter Saelens, and Yvan Saeys. “Computational Meth-

ods for Trajectory Inference from Single-Cell Transcriptomics”. In: European

Journal of Immunology 46.11 (Nov. 1, 2016), pp. 2496–2506. ISSN: 1521-4141.

DOI: 10.1002/eji.201646347.

[5] Kevin R Moon et al. “Manifold Learning-Based Methods for Analyzing

Single-Cell RNA-Sequencing Data”. In: Current Opinion in Systems Biology.

\backslashtextbullet{} Future of Systems Biology\backslashtextbullet{}

Genomics and Epigenomics 7 (Feb. 2018), pp. 36–46. ISSN: 2452-3100. DOI:

10.1016/j.coisb.2017.12.008.

[6] Zehua Liu et al. “Reconstructing Cell Cycle Pseudo Time-Series via Single-Cell

Transcriptome Data”. In: Nature Communications 8.1 (June 2017), p. 22. ISSN:

2041-1723. DOI: 10.1038/s41467-017-00039-z.

[7] F Alexander Wolf et al. “Graph Abstraction Reconciles Clustering with Trajec-

tory Inference through a Topology Preserving Map of Single Cells”. In: bioRxiv

(Oct. 2017), p. 208819. DOI: 10.1101/208819.

[8] Andreas Schlitzer et al. “Identification of cDC1- and cDC2-Committed DC Pro-

genitors Reveals Early Lineage Priming at the Common DC Progenitor Stage

in the Bone Marrow”. In: Nature Immunology 16.7 (July 2015), pp. 718–728.

ISSN: 1529-2916. DOI: 10.1038/ni.3200.

[9] Lars Velten et al. “Human Haematopoietic Stem Cell Lineage Commitment Is

a Continuous Process”. In: Nature Cell Biology 19.4 (Apr. 2017), pp. 271–281.

ISSN: 1476-4679. DOI: 10.1038/ncb3493.

[10] Peter See et al. “Mapping the Human DC Lineage through the Integra-

tion of High-Dimensional Techniques”. In: Science 356.6342 (June 2017),

eaag3009. ISSN: 0036-8075, 1095-9203. DOI: 10 . 1126 / science . aag3009.

pmid: 28473638.

Page 113

https://doi.org/10.1038/nature21350
https://doi.org/10.1101/gr.190595.115
https://doi.org/10.1101/gr.190595.115
26430159
https://doi.org/10.1002/eji.201646347
https://doi.org/10.1016/j.coisb.2017.12.008
https://doi.org/10.1038/s41467-017-00039-z
https://doi.org/10.1101/208819
https://doi.org/10.1038/ni.3200
https://doi.org/10.1038/ncb3493
https://doi.org/10.1126/science.aag3009
28473638

dynbenchmark: A comparison of single-cell trajectory inference methods.

3

[11] Sara Aibar et al. “SCENIC: Single-Cell Regulatory Network Inference

and Clustering”. In: Nature Methods (Oct. 2017). ISSN: 1548-7091. DOI:

10.1038/nmeth.4463.

[12] Aviv Regev et al. “The Human Cell Atlas”. In: eLife 6 (Dec. 2017). ISSN:

2050084X. DOI: 10.7554/eLife.27041.

[13] Xiaoping Han et al. “Mapping the Mouse Cell Atlas by Microwell-Seq”. In: Cell

172.5 (Feb. 2018), 1091–1107.e17. ISSN: 1097-4172. DOI: 10.1016/j.cell.2018.

02.001. pmid: 29474909.

[14] Nicholas Schaum et al. “Single-Cell Transcriptomics of 20 Mouse Organs Cre-

ates a Tabula Muris”. In: Nature 562.7727 (Oct. 2018), pp. 367–372. ISSN: 1476-

4687. DOI: 10.1038/s41586-018-0590-4.

[15] Philipp Angerer et al. “Single Cells Make Big Data: New Challenges and Oppor-

tunities in Transcriptomics”. In: Current Opinion in Systems Biology. Big Data

Acquisition and Analysis \backslashtextbullet{} Pharmacology and Drug Dis-

covery 4 (Aug. 2017), pp. 85–91. ISSN: 2452-3100. DOI: 10.1016/j.coisb.2017.

07.004.

[16] Vincent J Henry et al. “OMICtools: An Informative Directory for Multi-Omic

Data Analysis”. In:Database: The Journal of Biological Databases and Curation

2014 (July 2014). ISSN: 1758-0463. DOI: 10 . 1093/database /bau069. pmid:

25024350.

[17] Sean Davis et al. Awesome Single Cell. June 2018.

[18] Luke Zappia, Belinda Phipson, and Alicia Oshlack. “Exploring the Single-Cell

RNA-Seq Analysis Landscape with the scRNA-Tools Database”. In: bioRxiv (Oct.

2017), p. 206573. DOI: 10.1101/206573.

[19] Sean C. Bendall et al. “Single-Cell Trajectory Detection Uncovers Progression

and Regulatory Coordination in Human B Cell Development”. In: Cell 157.3

(2014), pp. 714–725. ISSN: 00928674. DOI: 10.1016/j.cell.2014.04.005.

[20] Jaehoon Shin et al. “Single-Cell RNA-Seq with Waterfall Reveals Molecular

Cascades Underlying Adult Neurogenesis”. In: Cell Stem Cell 17.3 (Sept. 3,

2015), pp. 360–372. ISSN: 1875-9777. DOI: 10.1016/j.stem.2015.07.013. pmid:

26299571.

[21] Kieran Campbell and Christopher Yau. “Bayesian Gaussian Process Latent

Variable Models for Pseudotime Inference in Single-Cell RNA-Seq Data”. In:

bioRxiv (Sept. 2015), p. 26872. DOI: 10.1101/026872.

[22] Laleh Haghverdi et al. “Diffusion Pseudotime Robustly Reconstructs Lineage

Branching”. In: Nature Methods 13.10 (Oct. 2016), pp. 845–848. ISSN: 1548-

7105. DOI: 10.1038/nmeth.3971.

[23] Manu Setty et al. “Wishbone Identifies Bifurcating Developmental Trajectories

from Single-Cell Data”. In:Nat. Biotechnol. 34 (April June 2016), pp. 1–14. ISSN:

1087-0156. DOI: 10.1038/nbt.3569. pmid: 27136076.

Page 114

https://doi.org/10.1038/nmeth.4463
https://doi.org/10.7554/eLife.27041
https://doi.org/10.1016/j.cell.2018.02.001
https://doi.org/10.1016/j.cell.2018.02.001
29474909
https://doi.org/10.1038/s41586-018-0590-4
https://doi.org/10.1016/j.coisb.2017.07.004
https://doi.org/10.1016/j.coisb.2017.07.004
https://doi.org/10.1093/database/bau069
25024350
https://doi.org/10.1101/206573
https://doi.org/10.1016/j.cell.2014.04.005
https://doi.org/10.1016/j.stem.2015.07.013
26299571
https://doi.org/10.1101/026872
https://doi.org/10.1038/nmeth.3971
https://doi.org/10.1038/nbt.3569
27136076

3

dynbenchmark: A comparison of single-cell trajectory inference methods.

[24] Cole Trapnell et al. “The Dynamics and Regulators of Cell Fate Decisions Are

Revealed by Pseudotemporal Ordering of Single Cells.”. In: Nature biotechnol-

ogy 32.4 (Mar. 2014), pp. 381–386. ISSN: 1546-1696. DOI: 10.1038/nbt.2859.

pmid: 24658644.

[25] Hirotaka Matsumoto, Matsumoto Hirotaka, and Kiryu Hisanori. “SCOUP: A

Probabilistic Model Based on the Ornstein-Uhlenbeck Process to Analyze

Single-Cell Expression Data during Differentiation”. In: BMC Bioinformatics

17.1 (2016).

[26] Xiaojie Qiu et al. “Reversed Graph Embedding Resolves Complex Single-Cell

Trajectories”. In: Nature Methods 14.10 (Oct. 2017), pp. 979–982. ISSN: 1548-

7105. DOI: 10.1038/nmeth.4402.

[27] Kelly Street et al. “Slingshot: Cell Lineage and Pseudotime Inference for Single-

Cell Transcriptomics”. In: BMC Genomics 19.1 (June 2018), p. 477. ISSN: 1471-

2164. DOI: 10.1186/s12864-018-4772-0.

[28] Zhicheng Ji and Hongkai Ji. “{TSCAN}: Pseudo-Time Reconstruction and Eval-

uation in Single-Cell {RNA-Seq} Analysis”. In: Nucleic Acids Res. (2016).

[29] Joshua D. Welch, Alexander J. Hartemink, and Jan F. Prins. “SLICER: Inferring

Branched, Nonlinear Cellular Trajectories from Single Cell RNA-Seq Data”. In:

Genome Biology 17 (2016), p. 106. ISSN: 1474-760X. DOI: 10.1186/s13059-

016-0975-3.

[30] David A DuVerle et al. “CellTree: An R/Bioconductor Package to Infer the Hi-

erarchical Structure of Cell Populations from Single-Cell RNA-Seq Data”. In:

BMC Bioinformatics 17 (Sept. 2016), p. 363. ISSN: 1471-2105. DOI: 10.1186/

s12859-016-1175-6.

[31] Tapio Lönnberg et al. “Single-Cell RNA-Seq and Computational Analysis Us-

ing Temporal Mixture Modeling Resolves TH1/TFH Fate Bifurcation in Malaria”.

In: Science Immunology 2.9 (Mar. 2017), eaal2192. ISSN: 2470-9468. DOI: 10.

1126/sciimmunol.aal2192. pmid: 28345074.

[32] Kieran R Campbell and Christopher Yau. “Probabilistic Modeling of Bifurca-

tions in Single-Cell Gene Expression Data Using a Bayesian Mixture of Factor

Analyzers”. In:WellcomeOpen Research 2 (Mar. 2017), p. 19. ISSN: 2398-502X.

DOI: 10.12688/wellcomeopenres.11087.1.

[33] Luyi Tian et al. “scRNA-Seq Mixology: Towards Better Benchmarking of Sin-

gle Cell RNA-Seq Protocols and Analysis Methods”. In: bioRxiv (Oct. 2018),

p. 433102. DOI: 10.1101/433102.

[34] Thomas Schaffter, Daniel Marbach, and Dario Floreano. “GeneNetWeaver: In

Silico Benchmark Generation and Performance Profiling of Network Inference

Methods.”. In: Bioinformatics 27.16 (Aug. 2011), pp. 2263–2270. ISSN: 1367-

4811. DOI: 10.1093/bioinformatics/btr373. pmid: 21697125.

Page 115

https://doi.org/10.1038/nbt.2859
24658644
https://doi.org/10.1038/nmeth.4402
https://doi.org/10.1186/s12864-018-4772-0
https://doi.org/10.1186/s13059-016-0975-3
https://doi.org/10.1186/s13059-016-0975-3
https://doi.org/10.1186/s12859-016-1175-6
https://doi.org/10.1186/s12859-016-1175-6
https://doi.org/10.1126/sciimmunol.aal2192
https://doi.org/10.1126/sciimmunol.aal2192
28345074
https://doi.org/10.12688/wellcomeopenres.11087.1
https://doi.org/10.1101/433102
https://doi.org/10.1093/bioinformatics/btr373
21697125

dynbenchmark: A comparison of single-cell trajectory inference methods.

3

[35] Luke Zappia, Belinda Phipson, and Alicia Oshlack. “Splatter: Simulation of

Single-Cell RNA Sequencing Data”. In: Genome Biology 18 (Sept. 2017), p. 174.

ISSN: 1474-760X. DOI: 10.1186/s13059-017-1305-0.

[36] Valentine Svensson, Roser Vento-Tormo, and Sarah A Teichmann. “Exponen-

tial Scaling of Single-Cell RNA-Seq in the Past Decade”. In: Nature Protocols

13.4 (Apr. 2018), pp. 599–604. ISSN: 1750-2799. DOI: 10.1038/nprot.2017.149.

[37] Junyue Cao et al. “Joint Profiling of Chromatin Accessibility and Gene Expres-

sion in Thousands of Single Cells”. In: Science (Aug. 2018), eaau0730. ISSN:

0036-8075, 1095-9203. DOI: 10.1126/science.aau0730. pmid: 30166440.

[38] Natalya Pya and Simon N Wood. “Shape Constrained Additive Models”. In:

Statistics and Computing 25.3 (May 2015), pp. 543–559. ISSN: 1573-1375. DOI:

10.1007/s11222-013-9448-7.

[39] Morgan Taschuk and Greg Wilson. “Ten Simple Rules for Making Research

Software More Robust”. In: PLOS Computational Biology 13.4 (Apr. 2017),

e1005412. ISSN: 1553-7358. DOI: 10.1371/journal.pcbi.1005412.

[40] Serghei Mangul et al. “A Comprehensive Analysis of the Usability and Archival

Stability of Omics Computational Tools and Resources”. In: bioRxiv (Oct. 2018),

p. 452532. DOI: 10.1101/452532.

[41] Greg Wilson et al. “Best Practices for Scientific Computing”. In: PLOS Biol-

ogy 12.1 (Jan. 2014), e1001745. ISSN: 1545-7885. DOI: 10.1371/journal.pbio.

1001745.

[42] Haydee Artaza et al. “Top 10 Metrics for Life Science Software Good Practices”.

In: F1000Research 5 (Aug. 2016), p. 2000. ISSN: 2046-1402. DOI: 10.12688/

f1000research.9206.1.

[43] Jeff Lee.Rpackages: R PackageDevelopment - the LeekGroupWay!Dec. 2017.

URL: https://github.com/jtleek/rpackages.

[44] Hadley Wickham. R Packages: Organize, Test, Document, and Share Your

Code. O’Reilly Media, Inc., Mar. 26, 2015. 201 pp. ISBN: 978-1-4919-1056-6.

Google Books: DqSxBwAAQBAJ.

[45] Luis Bastiao Silva et al. “General Guidelines for Biomedical Software

Development”. In: F1000Research 6 (July 2017). ISSN: 2046-1402. DOI:

10.12688/f1000research.10750.2. pmid: 28443186.

[46] Rafael C Jiménez et al. “Four Simple Recommendations to Encourage Best

Practices in Research Software”. In: F1000Research 6 (June 2017). ISSN: 2046-

1402. DOI: 10.12688/f1000research.11407.1. pmid: 28751965.

[47] Mehran Karimzadeh and Michael M. Hoffman. “Top Considerations for Cre-

ating Bioinformatics Software Documentation”. In: Briefings in Bioinformatics

19.4 (July 20, 2018), pp. 693–699. ISSN: 1467-5463. DOI: 10.1093/bib/bbw134.

[48] Alex Anderson. Writing Great Scientific Code. Oct. 2016. URL: http : / /

alexanderganderson.github.io/code/2016/10/12/coding_tips.html.

Page 116

https://doi.org/10.1186/s13059-017-1305-0
https://doi.org/10.1038/nprot.2017.149
https://doi.org/10.1126/science.aau0730
30166440
https://doi.org/10.1007/s11222-013-9448-7
https://doi.org/10.1371/journal.pcbi.1005412
https://doi.org/10.1101/452532
https://doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.12688/f1000research.9206.1
https://doi.org/10.12688/f1000research.9206.1
https://github.com/jtleek/rpackages
http://books.google.com/books?id=DqSxBwAAQBAJ
https://doi.org/10.12688/f1000research.10750.2
28443186
https://doi.org/10.12688/f1000research.11407.1
28751965
https://doi.org/10.1093/bib/bbw134
http://alexanderganderson.github.io/code/2016/10/12/coding_tips.html
http://alexanderganderson.github.io/code/2016/10/12/coding_tips.html

3

dynbenchmark: A comparison of single-cell trajectory inference methods.

[49] Brett K Beaulieu-Jones and Casey S Greene. “Reproducibility of Computa-

tionalWorkflows Is Automated Using Continuous Analysis”. In:Nature Biotech-

nology 35.4 (Mar. 2017), nbt.3780. ISSN: 1546-1696. DOI: 10.1038/nbt.3780.

[50] Vincent Driessen. A Successful Git Branching Model. Jan. 2010. URL: http://

nvie.com/posts/a-successful-git-branching-model/.

[51] Anne-Laure Boulesteix. “Ten Simple Rules for ReducingOveroptimistic Report-

ing in Methodological Computational Research”. In: PLOS Computational Bi-

ology 11.4 (Apr. 2015), e1004191. ISSN: 1553-7358. DOI: 10.1371/journal.pcbi.

1004191.

[52] Jean Francois Puget. Green Dice Are Loaded (Welcome to p-Hacking). Mar.

2016. URL: https://www.ibm.com/developerworks/community/blogs/jfp/

entry/Green_dice_are_loaded_welcome_to_p_hacking.

[53] FrankGannon. “The Essential Role of Peer Review”. In: EMBOReports 2.9 (Sept.

2001), p. 743. ISSN: 1469-221X. DOI: 10.1093/embo- reports/kve188. pmid:

11559578.

[54] Melinda Baldwin. “In Referees We Trust?”. In: Physics Today 70.2 (Feb. 2017),

pp. 44–49. ISSN: 0031-9228. DOI: 10.1063/PT.3.3463.

[55] Mohamed Radhouene Aniba, Olivier Poch, and Julie D Thompson. “Issues

in Bioinformatics Benchmarking: The Case Study of Multiple Sequence

Alignment”. In: Nucleic Acids Research 38.21 (Nov. 2010), pp. 7353–7363.

ISSN: 0305-1048. DOI: 10.1093/nar/gkq625. pmid: 20639539.

[56] Monika Jelizarow et al. “Over-Optimism in Bioinformatics: An Illustration”. In:

Bioinformatics 26.16 (Aug. 2010), pp. 1990–1998. ISSN: 1367-4803. DOI: 10.

1093/bioinformatics/btq323.

[57] Wouter Saelens, Robrecht Cannoodt, and Yvan Saeys. “A Comprehensive Eval-

uation of Module Detection Methods for Gene Expression Data”. In: Nature

Communications 9.1 (Mar. 2018), p. 1090. ISSN: 2041-1723. DOI: 10 . 1038 /

s41467-018-03424-4.

[58] Gioele La Manno et al. “RNA Velocity of Single Cells”. In:Nature 560.7719 (Aug.

2018), pp. 494–498. ISSN: 1476-4687. DOI: 10.1038/s41586-018-0414-6.

[59] Raquel Norel, John Jeremy Rice, and Gustavo Stolovitzky. “The Self-

Assessment Trap: Can We All Be Better than Average?”. In: Molecular systems

biology 7.1 (2011), p. 537. ISSN: 1744-4292. DOI: 10.1038/msb.2011.70. pmid:

21988833.

[60] Anthony Gitter. Single-Cell RNA-Seq Pseudotime Estimation Algorithm. June

2018.

[61] Tsukasa Kouno et al. “Temporal Dynamics and Transcriptional Control Using

Single-Cell Gene Expression Analysis”. In: Genome Biol. 14.10 (2013), R118.

Page 117

https://doi.org/10.1038/nbt.3780
http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/
https://doi.org/10.1371/journal.pcbi.1004191
https://doi.org/10.1371/journal.pcbi.1004191
https://www.ibm.com/developerworks/community/blogs/jfp/entry/Green_dice_are_loaded_welcome_to_p_hacking
https://www.ibm.com/developerworks/community/blogs/jfp/entry/Green_dice_are_loaded_welcome_to_p_hacking
https://doi.org/10.1093/embo-reports/kve188
11559578
https://doi.org/10.1063/PT.3.3463
https://doi.org/10.1093/nar/gkq625
20639539
https://doi.org/10.1093/bioinformatics/btq323
https://doi.org/10.1093/bioinformatics/btq323
https://doi.org/10.1038/s41467-018-03424-4
https://doi.org/10.1038/s41467-018-03424-4
https://doi.org/10.1038/s41586-018-0414-6
https://doi.org/10.1038/msb.2011.70
21988833

dynbenchmark: A comparison of single-cell trajectory inference methods.

3

[62] Chun Zeng et al. “Pseudotemporal Ordering of Single Cells Reveals Metabolic

Control of Postnatal β Cell Proliferation”. In: Cell Metabolism 25.5 (May 2017),

1160–1175.e11. ISSN: 15504131. DOI: 10.1016/j.cmet.2017.04.014.

[63] Nikolaos Papadopoulos, Rodrigo Gonzalo Parra, and Johannes Soeding.

“PROSSTT: Probabilistic Simulation of Single-Cell RNA-Seq Data for Com-

plex Differentiation Processes”. In: bioRxiv (Jan. 2018), p. 256941. DOI:

10.1101/256941.

[64] DanielMarbach et al. “WisdomofCrowds for Robust GeneNetwork Inference”.

In: Nature methods 9.8 (July 2012), pp. 796–804. ISSN: 1548-7091. DOI: 10.

1038/nmeth.2016. pmid: 22796662.

[65] Aaron T L Lun, Davis J McCarthy, and John C Marioni. “A Step-by-Step Work-

flow for Low-Level Analysis of Single-Cell RNA-Seq Data with Bioconductor”.

In: F1000Research 5 (Oct. 2016), p. 2122. ISSN: 2046-1402. DOI: 10.12688/

f1000research.9501.2.

[66] G Jurman et al. “The HIM Glocal Metric and Kernel for Network Comparison

and Classification”. In: 2015 IEEE International Conference on Data Science

and Advanced Analytics (DSAA). Oct. 2015, pp. 1–10. DOI: 10.1109/DSAA.2015.

7344816.

[67] Marvin N Wright and Andreas Ziegler. “Ranger: A Fast Implementation of Ran-

dom Forests for High Dimensional Data in C++ and R”. In: Journal of Statistical

Software 77.1 (Mar. 2017). DOI: 10.18637/jss.v077.i01.

[68] T Junttila and P Kaski. “Engineering an Efficient Canonical Labeling Tool for

Large and Sparse Graphs”. In: 2007 Proceedings of the Ninth Workshop on

Algorithm Engineering and Experiments (ALENEX). Proceedings. Society for In-

dustrial and Applied Mathematics, Jan. 2007, pp. 135–149. DOI: 10 . 1137 / 1 .

9781611972870.13.

[69] Laura Bahiense et al. “The Maximum Common Edge Subgraph Problem: A

Polyhedral Investigation”. In: Discrete Applied Mathematics. V Latin American

Algorithms, Graphs, and Optimization Symposium \backslashtextemdash{}

Gramado, Brazil, 2009 160.18 (Dec. 2012), pp. 2523–2541. ISSN: 0166-218X.

DOI: 10.1016/j.dam.2012.01.026.

[70] Edward R Dougherty. “Validation of Gene Regulatory Networks: Scientific and

Inferential”. In: Briefings in Bioinformatics 12.3 (May 2011), pp. 245–252. ISSN:

1477-4054. DOI: 10.1093/bib/bbq078. pmid: 21183477.

[71] Mads Ipsen and Alexander S Mikhailov. “Evolutionary Reconstruction of

Networks”. In: Physical Review. E, Statistical, Nonlinear, and Soft Matter

Physics 66 (4 Pt 2 Oct. 2002), p. 46109. ISSN: 1539-3755. DOI: 10 . 1103 /

PhysRevE.66.046109. pmid: 12443261.

Page 118

https://doi.org/10.1016/j.cmet.2017.04.014
https://doi.org/10.1101/256941
https://doi.org/10.1038/nmeth.2016
https://doi.org/10.1038/nmeth.2016
22796662
https://doi.org/10.12688/f1000research.9501.2
https://doi.org/10.12688/f1000research.9501.2
https://doi.org/10.1109/DSAA.2015.7344816
https://doi.org/10.1109/DSAA.2015.7344816
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.1137/1.9781611972870.13
https://doi.org/10.1137/1.9781611972870.13
https://doi.org/10.1016/j.dam.2012.01.026
https://doi.org/10.1093/bib/bbq078
21183477
https://doi.org/10.1103/PhysRevE.66.046109
https://doi.org/10.1103/PhysRevE.66.046109
12443261

4 | SCORPIUS: Fast, accurate, and robust

single-cell pseudotime
Abstract

Purpose: Recent advances in single-cell RNA-sequencing allowmodelling

progression of single cells along a dynamic process of interest as a trajec-

tory. While already more than 75 trajectory inference methods have been

developed, comprehensive benchmarking demonstrated that pseudotem-

poral ordering cells robustly is still a challenging task.

Results: SCORPIUS is a trajectory inference method specialised in pseu-

dotemporally ordering single-cell profiles. Applying SCORPIUS to a large

collection of datasets shows that it consistently produces more accurate

and robust trajectories in comparison to state-of-the-art trajectory infer-

ence methods. We used SCORPIUS to generate novel hypotheses regard-

ing dendritic cell development, which were subsequently validated in vivo.

Conclusion: By providing a robust and accurate toolkit for inferring lin-

ear trajectories, we aim to make pseudotime analysis as easy-to-use and

prevalent as other types of analysis such as differential expression and gene

set enrichment.

Publication status

Published in bioRxiv 079509. doi:10.1101/079509.

Revised manuscript in preparation.

Cannoodt R, Saelens W, Sichien D, Tavernier S, Janssens S, Guilliams M,

Lambrecht B, De Preter K, and Saeys Y.

Author contributions

• R.C. and Y.S. designed the study.

• R.C. and W.S. benchmarks and analysed the data.

• S.T. and D.S. generated experimental data.

• R.C. implemented the SCORPIUS software package.

• R.C. wrote the original manuscript.

• R.C., S.J., M.G., B.L., K.D.P., and Y.S. reviewed and edited the manuscript.

• K.D.P. and Y.S. supervised the project.

Page 119

http://dx.doi.org/10.1101/079509

SCORPIUS: Fast, accurate, and robust single-cell pseudotime.

4
4.1 Introduction

Technological advancements in single-cell omics allow studying a dynamic process in

a high-throughput manner. This raises concerns regarding biological fundamentals,

such as how to define cell types or transitions between them [1, 2]. Trajectory infer-

ence (TI) methods aim to give insight into a dynamic process by inferring a trajectory

from omics profiles of cells in which the dynamic process takes place [3].

In linear TI, also sometimes called pseudotemporal ordering, the user assumes that

the dynamic process of interest is linear and is interested in how gene expression

changes along the dynamic process. Linear TI is a special case of generalised TI which

should be easier to tackle since topology is fixed. However, a recent benchmarking

study showed that even linear TI is a non-trivial task [4], with most TI methods not

capable of producing accurate models for many linear datasets.

In this work, we explain the workings of SCORPIUS, a toolbox specialised in inferring

and interpreting linear trajectories. We show that SCORPIUS obtains higher accuracy

scores on linear datasets in comparison to state-of-the-art TI methods. Finally, we

demonstrate its usage by extracting novel findings from an existing single-cell omics

dataset containing developing dendritic cells [5].

4.2 Results

In essence, SCORPIUS reduces the dimensionality of the dataset using Multi-

Dimensional Scaling (MDS) [6], and derives a smooth curve that goes through the

middle of the dataset using principal curves [7] (Figure 4.1A). However, both MDS and

principal curves scale poorly with respect to the number of cells in the dataset, so

these were adapted to scale linearly instead (See Methods). In addition, SCORPIUS

produces a heatmap of the genes which are strongly up- or downregulated in

function of the pseudotemporal ordering (Figure 4.1B). The genes are prioritised

using the Random Forest feature importance score [8]. By clustering the genes into

sets of coexpressed genes, the user can more easily reason about the functional

aspect of the different gene modules.

Examples of other (linear and non-linear) TI methods illustrate common sources of

low-accuracy predictions in linear TI (Figure 4.1C), namely the inference of false pos-

itive branches or incorrect pseudotemporal orderings.

Page 120 Wouter, I cannot imagine a better partner to do a PhD with. If we were genes,
we’d be reciprocal activators, constantly stimulating each other to do just a little bit more!

4

SCORPIUS: Fast, accurate, and robust single-cell pseudotime.

A

C

B LSK CMP GMP
High

Low

Gpr56
Egr1
Meis1
Angpt1
Car2
Ifitm1
Tgtp2
Calcrl
Tsc22d1
Rgs1
Tspan13
Gimap6
Gcnt2
Ctla2b
Gimap1
Dntt
Mn1

Cks1b
H2afz
Slc25a5
Pdia6
Hsp90b1
Pgam1
Calr
S100a11
Tuba4a
Plac8
Lta4h
P4hb
Prtn3
Mpo
Nkg7
Srgn

Prom1
1100001G20Rik
S100a8
Fcnb
Clec4a2
Neu1
Ncam1
Hsd11b1
Nucb2
Arsb
C3
Afap1
Dmkn
App
Cybb
Clec5a
Gda
Sgms2
Cldn15
Pglyrp1
Pxylp1
Hvcn1
Mtus1
Trem3
Hdc
Ptgr1
Adssl1
F630028O10Rik
Tfec
Fcgr2b
Stom
Prss57
Hp
Fcgr3
Rgcc

Cd63
Rab44
Fen1
Atp6ap2
Ctsg
Ap3s1
Hk3
Ms4a3
Igsf6
Elane
Alas1
Surf4
Gstm1
Prdx5
Tmed3
Mt1
Dstn
Cst7
Ctsz
Tmsb4x
Rrm2
Cdca8
Cdca3
Fdps
2810417H13Rik
Tyrobp
Clec12a
Anxa3
Ly6c2
Slpi
Tifab
F13a1

Time
Progression

Figure 4.1: A: SCORPIUS derives a smooth curve that passes through the middle of the dataset.
B: Prioritising genes in function of the pseudotemporal ordering allows easier interpretation of
the dynamic process at hand. C: Low accuracy predictions are a result of false positive branches
or incorrect pseudotemporally orderings.

4.2.1 SCORPIUS outperforms existing TI tools in inferring linear tra-

jectories

In the TI method benchmark, SCORPIUS outperforms all other TI methods in inferring

accurate models for datasets containing a linear trajectory [4]. Out of 45 TI methods

– of which 14 were linear TI methods – SCORPIUS was the only method capable of

producing top-scoring predictions on more than 50% of datasets containing linear

trajectories (Figure 4.2A). Overall, SCORPIUS obtained the highest mean accuracy

score on linear datasets, and was also one of the top ranked methods in terms of

scalability, stability, and usability (Figure 4.2B).

We evaluated the gain in execution time due to optimisations made in the dimension-

ality reduction and the smoothing of the principal curve. In classical MDS, a square

distance matrix between all cells is calculated. In Landmark MDS (LMDS), only the

distances between a randomly selected set of landmarks and all other cells needs

to be computed, reducing the execution time of the dimensionality reduction signif-

icantly (Figure 4.3A). In the standard principal curves algorithm, a curve consisting

of n − 1 segments is iteratively smoothed with respect to the positions of n cells. By

approximating the principal curve between iterations using a fixed number of seg-

Yet, our knowledge was often so perfectly complementary; if we were a PCA plot,
you’d be PC1 and I’d be PC2. Or the other way around? Let’s take turns being PC1 and PC2.

Page 121

SCORPIUS: Fast, accurate, and robust single-cell pseudotime.

4
ouijaflow

ElPiGraph − Linear
SCUBA

MFA
MATCHER

cellTree maptpx
Wanderlust
PhenoPath

TSCAN
SLICE

topslam
Embeddr
Waterfall
Slingshot

Monocle ICA
SCORPIUS

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Fraction of top−scoring prediction

A B

Score Score Score Score

Accuracy on linear datasets Scalability Stability Usability

0 0 0 01 1 1 1

#1

#2

#3

#4

#5

#6

#7

#8

Embeddr

MATCHER

Monocle ICA

SCORPIUS

Slingshot

TSCAN

Wanderlust

Waterfall

CellTrails

DPT

MATCHER

MFA

PhenoPath

pseudogp

SCORPIUS

Slingshot

FORKS

PAGA

SCORPIUS

SLICER

STEMNET

Wanderlust

Waterfall

Wishbone

MATCHER

ouijaflow

PhenoPath

SCORPIUS

SCOUP

Slingshot

Wanderlust

Waterfall

Figure 4.2: SCORPIUS outperforms 44 TI methods in inferring linear trajectories. A: It is
the only method to produce top-scoring predictions on more than 50% of linear datasets. A
predicted model is considered top-scoring if its accuracy is larger than 95% of the maximum
accuracy obtained by any method on the same dataset. B: SCORPIUS ranks highly in all other
categories: scalability, stability and usability. The scalability experiments were performed by
upsampling a toy dataset and measuring the execution time and memory usage of each method.
Stability experiments were performed by running each method multiple times on subsampled
datasets and calculating the similarities between results. The usability of each method was
determined by defining a list of good scientific and programming practices and determining to
what extent each of these methods adhered to each aspect.

ments (e.g. 100), again the execution time of the principal curve algorithm is reduced

significantly (Figure 4.3B).

●● ●●●● ● ● ●● ●● ●● ●● ●●●● ● ●●● ●●● ● ●●● ●● ● ●● ●●● ●● ● ●● ●● ● ●●●● ●● ●●● ● ●● ●●●●● ●●●● ● ●●● ● ●●● ●●●●● ●● ●● ●● ●●● ● ●●●●●●●● ●● ●● ●●●● ●● ●●●● ●● ● ●●●● ●●● ● ●● ● ●● ●● ●●●● ●● ● ●●● ●● ●●● ●● ● ●● ●● ● ●● ●● ● ●● ●● ●●●●● ● ●● ●● ●●●●● ● ●● ●● ●●●●● ● ● ● ●● ●●●●● ● ● ● ●● ●●●●●● ● ● ●● ●●●●● ● ● ● ●● ●●●●● ● ● ● ●● ●●●●● ● ● ● ●● ●●●●● ● ● ● ●● ●●●●● ● ●● ●● ●●●●● ● ● ● ●● ●●●●● ● ●● ●● ●●● ●● ● ●●● ●● ●●● ●● ●●● ●●●●●● ● ● ●●●● ● ●● ●●●●● ●● ●●●● ● ● ● ●●●● ● ● ● ●

●● ●●●●● ● ●● ●● ●● ●● ●●●● ● ●●● ●● ● ● ●●● ●● ● ●● ● ●● ●● ● ●● ●● ● ●●●● ●● ●●● ● ●●●●●● ●●●● ● ●● ● ● ●●● ●●●● ● ●● ●● ●●●● ●●● ●● ●● ●●●● ●● ●●● ●● ● ●●●● ● ●● ● ●● ● ●● ●● ● ●●● ●● ● ●●● ●● ● ●● ●● ● ●● ●● ● ●● ●● ● ●● ●● ● ●●●● ● ● ● ●● ●●●●● ● ● ● ●● ●●●●● ● ● ● ●● ●●●●● ● ● ● ●● ●●●●●● ● ● ●● ●●●●● ● ● ● ●● ●●●●● ● ● ● ●● ●●●●● ● ● ● ●● ●●●●● ● ● ● ●● ●●●●● ● ●● ●● ●●●●● ● ● ● ●● ●●●●● ● ● ● ●● ●●● ●● ● ●●● ●● ●●● ●● ●●● ●●●●● ● ● ●● ●●● ● ● ●● ●●● ● ● ●● ●●● ● ● ●● ●●● ● ● ●●

●● ●●●● ● ● ●● ●● ●● ●● ●●●● ● ●●● ●●● ● ●●● ●● ● ●● ●●● ●● ● ●● ●● ● ●●●● ●● ●●● ● ●● ●●●●● ●●●● ● ●●● ● ●●● ●●●●● ●● ●● ●● ●●● ● ●●●●●●● ● ●● ●● ●●●● ●● ●●●● ●● ● ●●●● ●●● ● ●● ● ●● ●● ● ●●● ●● ● ●●● ●● ● ●● ●● ● ●● ●● ● ●● ●● ● ●● ●● ●●●●● ● ●● ●● ●●●●● ● ● ● ●● ●●●●● ● ● ● ●● ●●●●● ● ● ● ●● ●●●●●● ● ● ●● ●●●●● ● ● ● ●● ●●●●● ● ● ● ●● ●●●●● ● ● ● ●● ●●●●● ● ● ● ●● ●●●●● ● ●● ●● ●●●●● ● ● ● ●● ●●●●● ● ●● ●● ●●● ●● ● ●●● ●● ●●● ●● ●●● ●●●●● ● ● ● ●●●● ● ● ● ●●●●● ●● ●●●● ● ● ● ●●●● ● ● ● ●

●● ●●●● ● ● ●● ●● ●● ●● ●●●● ● ●●● ●●● ● ●●● ●● ● ●● ●●● ●● ● ●● ●● ● ●●●● ●● ●●● ● ●● ●●●●● ●●●● ● ●● ● ● ●●● ●●●● ● ●● ●● ●● ●●● ● ●● ● ●●●● ● ●● ●● ●●●● ●● ●●●● ●● ● ●●●● ●●● ● ●● ● ●● ●● ● ●●● ●● ● ●●● ●● ● ●● ●● ● ●● ●● ● ●● ●● ● ●● ●● ● ●●●● ● ●● ●● ●●●●● ● ● ● ●● ●●●●● ● ● ● ●● ●●●●● ● ● ● ●● ●●●●●● ● ● ●● ●●●●● ● ●● ●● ●●●●● ● ● ● ●● ●●●●● ● ● ● ●● ●●●●● ● ● ● ●● ●●●●● ● ●● ●● ●●●●● ● ● ● ●● ●●●●● ● ● ● ●● ●●● ●● ● ●●● ●● ●●● ●● ●●● ●●●●● ● ● ●●●●● ● ● ●●●●●● ● ●●●●● ● ● ●●●●● ● ● ●●

●● ●●● ●● ● ● ●● ●●● ● ●● ● ● ●● ●● ● ●●● ●●● ●●● ●●●● ● ●● ●● ● ●● ● ●●● ● ●● ●● ● ●●●●● ●● ●●● ●● ● ●

●● ●●● ●● ● ● ●● ●●●● ● ●● ● ●● ●●● ●●● ●●● ● ●● ●●● ● ● ●● ●●● ●● ● ●●● ● ●● ●● ● ●● ●●● ●● ●●● ●●● ●

With LMDS

With MDS

With princurve
optimisation

Without princurve
optimisation

With initialisation

Without initialisation

1e−01 1e+00 1e+01 1e+02 1e+03

0.1 1.0 10.0 100.0

0.00 0.25 0.50 0.75 1.00

Execution time (s)

Execution time (s)

Geodesic distance correlation

Wilcoxon p−value = 1.71e−23

Wilcoxon p−value = 1.81e−36

Wilcoxon p−value = 0.6666

A

B

C

Figure 4.3: Comparison of the effect of different optimisations made in SCORPIUS. The
optimisations in the dimensionality reduction (A) and principal curves (B) steps significantly
reduce the execution times of SCORPIUS. Initialising the principal curve does not yield significant
improvements on the accuracy of the predicted trajectory (C).

Page 122 Sofie, you saved my rear-end from embarrassing moments more frequently than I dare
to admit. The perfect example was when I walked in the MMM on 2014-01-06,

4

SCORPIUS: Fast, accurate, and robust single-cell pseudotime.

4.2.2 Functional modules in dendritic cell development

Applying SCORPIUS to a dataset of dendritic cell (DC) progenitors [5] reveals several

sets of functional modules which are up- and down-regulated during development.

DC progenitors are derived from hematopoietic stem cells in the bone marrow, and

transition through multiple cellular states before becoming fully developed DCs [9].

The dataset contains 57Monocyte andDendritic cell Progenitors (MDPs), 95Common

Dendritic cell Progenitors (CDPs) and 96 Pre-Dendritic Cells (PreDCs). SCORPIUS

correctly orders the cells with regard to their differentiation status, as indicated by

comparing the inferred trajectory with the known transition states (Figure 4.4A).

In order to predictwhich genes are involved inDCdevelopment, SCORPIUS computes

the importance value of the genes with respect to the pseudotemporal ordering and

selects the top genes for further visualisation. Clustering the genes into genemodules

allows to discover similar gene regulation patterns and gene functionality along the

pseudotime (Figure 4.4C). In this dataset, modules 1 to 3 are downregulated during

the development, while modules 4 to 6 are upregulated, indicating that as part of

development the cells lose some functionality but gain others.

The gene expression changes shown in modules 1 to 3 are very gradual and mainly

contain genes involved in early hematopoiesis or parallel hematopoietic lineage

branches (module 1 and 2), and protein synthesis (module 3). These expression

patterns of modules 1 and 2 are expected; as a DC progenitor develops into a DC, it

will lose expression of genes associated with pluripotency. In addition, the protein

synthesis rate has been shown to gradually decrease during granulocyte and B-cell

development [11]. Module 3 suggests that an analogous process exists during DC

development. We quantified the protein synthesis rate of murine bone marrow

cells in vivo by intraperitoneally injecting O-propargyl-puromycin (OP-Puro). While

the OP-Puro fluorescence intensities varied across the five individual mice, the

relative fluorescence levels are very similar across replicates (Figure 4.4C) and show

that indeed protein synthesis rates initially increase during early hematopoiesis but

subsequently decrease during DC development.

While module 4 contains mostly genes that are already known to be involved in den-

dritic cell development, it nicely demonstrates the added benefit of pseudotemporal

ordering as it is possible to distinguish which genes are upregulated first. Module 5

and 6 capture essential functionality of DCs: actin polymerisation plays a crucial role

in determining a DC’s morphology, migratory behaviour, and antigen internalisation

(module 5, [12, 13]), and presenting antigens is one of the core responsibilities of a DC

(module 6, [14]).

I arrived a little bit too late, and you send me a message:
”You do know that you have to present today, right?”

Page 123

SCORPIUS: Fast, accurate, and robust single-cell pseudotime.

4
k

k

k

k

k

k

k

k

k

k

k

kk

k

k k

k
k

k

kk

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k k

k

k

k

k

k

k

k

k

k
k

k

k k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k k

k

k

k
k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

CDP

MDP PreDC

Model

Component 1

C
o
m

p
o
n
e
n
t
2

A C

B
NA Low High

CDPMDP PreDC

EARLY
HEMATOPOIESIS

ALTERNATIVE
HEMATOPOIETIC

BRANCHES

PROTEIN
SYNTHESIS

DENDRITIC CELL
DEVELOPMENT

ACTIN
POLYMERIZATION

ANTIGEN
PRESENTATION

Function
Nkg7
Cd81
Mybbp1a
Smyd5
Gcsh
Suclg2
Farsa
Fabp5
Shmt2
Ttyh2
Abcf2
Marcksl1

Cd34
Cst7
Phgdh
Aprt
Hspd1
Mcm7
Gnl3
Bzw2
Rsl24d1
Prtn3
Nop56
Myb
Tpi1
Cdca7
Gtpbp4
Idh2

Lsm3
Prdx2
AK152437
Gas5
Rps19
Rpl3
Ifitm2
Set
Rpl14
Hmgn2
H2afy
Gm4987
Rpl29
Eef1g
Eef1a1

Itgax
Ly6d
Cd7
Fgr
Rnd3
L1cam
Lgals3
Irf8
Slc34a2
S100a11
Ctsh
Tmsb4x
Actb
Gm2a
H2−Aa
H2−Eb1
Plbd1
Id2

Cd27
Chchd4
Myc
Slc16a1
Ppa1
Muc13
Ruvbl2
Rab44
Ipo5
AK080350
Wdr77
BC005764

Igfbp4
Gpr97
Tuba4a
B230120H23Rik

Polr2f
Lgals9
Dkc1
Ilf3
Mpo
Serpinb1a
Ccnd2
Nolc1
Ctsg
Glipr1
F13a1
Slpi

Cdk4
Etfb
Npm1
Hsp90ab1
Ncl
Atpif1
Srgn
Nop58
Rps18
Nme1
Plac8
Rpl23
Emb
Rpl4
Cd93

Spib
Siglech
Amica1
Upb1
Cd209a
Ifi30

Crip1
Kmo
Ahnak
Lsp1
Rnase6
Tmsb10

Cd74
H2−Ab1
Slamf7
Slc46a3

H
S

C

M
P

P

M
L

P

C
M

P

G
M

P

cD
C

1

cD
C

2

Single cells ordered by SCORPIUS BulkBulk

0

1000

2000

3000

4000

5000

M
e
a
n

 O
P

-P
u
ro

 e
x
p
re

s
s
io

n

LT HSC ST HSC MPP CMP MDP CDP PreDC

Figure 4.4: SCORPIUS sheds new, data-driven light on dendritic cell development. A: SCOR-
PIUS creates an accurate model for DC development from scRNA-seq data. B: These genes
are clustered into six gene modules. Each module is responsible for different aspects of DC
development. Bulk microarray expression for up- and downstream stages of dendritic cell devel-
opment [10] shows that the gene expression patterns uncovered by SCORPIUS are replicable in
other datasets. C: In line with the decreasing transcript expression levels of protein translation
genes, decreasing OP-Puro fluorescence levels indicates that the protein synthesis rate of preDCs
progressively decreases during DC development.

4.3 Discussion

SCORPIUS is a significantmilestone in accuratelymodelling amulti-stage progression

of a dynamic process using single-cell omics datasets. It provides a complete pipeline

for inferring, visualising and interpreting linear trajectories. While linear TI is a simpler

case of generalised TI, we showed that it is still a challenging task, as most TI methods

generally are not capable of deriving accurate pseudotemporal orderings on linear

Page 124 Helena, thank you for being such a lovely colleague and an even better friend.
I enjoy our scientific talks and our non-scientific walks.

4

SCORPIUS: Fast, accurate, and robust single-cell pseudotime.

datasets. SCORPIUS outperforms the 44 other TI methods included in the benchmark

in terms of accuracy and stability, and is amongst the top performingmethods in terms

of stability and usability.

4.4 Methods

SCORPIUS consists of three main steps: dimensionality reduction, trajectory mod-

elling, and feature importance (Figure 4.5). The respective main algorithms for

these steps are Multi-Dimensional Scaling (MDS) [6], Principal Curves [7], and Ran-

dom Forests [8]. However, scRNA-seq datasets can have very high dimensionality

(e.g. 100’000 cells and 10’000 features) but are typically very sparse (only 10% of

values are non-zero). Each of these steps require modifications in order to be

scaleable to large datasets (Sections 4.4.1-4.4.4).

A

B

C

Sample landmarks,

perform MDS

Project all cells

to landmark space

Smooth

principal curves

Shortest between

k-means clusters

Max

Min

Feature selection Extract modules

scRNA-seq

expression data

Reduced

dimensions

Trajectory

Key genes

Landmark

MDS

Smooth

principal curves

Shallow

random forest

Figure 4.5: SCORPIUS consists of three main steps. A: Landmark MDS reduces the dimension-
ality of a small set of randomly sampled cells called landmarks. Afterwards, all other cells are
projected to the landmark space. B: Smooth principal curves are used to pseudotemporally order
the cells. The principal curve is initialised by connecting k-means clusters to improve robustness.
C: Shallow random forests prioritise which genes best explain the pseudotemporal ordering.

Together with you, I played the longest ongoing game of hide-and-seek,
on page 22-9 you probably already found the truc that I am referring to.

Page 125

SCORPIUS: Fast, accurate, and robust single-cell pseudotime.

4
4.4.1 Sparse Spearman Rank Correlation

Before dimensionality reduction, the distance between two cells x and y is calculated

as the Spearman distance for tied ranks (Equation 4.1).

dist(x, y) = 1
2

− cov(−→rx, −→ry)
2 × sd(−→rx) × sd(−→ry)

(4.1)

with −→rx = The rank of the expression values of x,

cov(x, y) = The covariance between x and y,

sd(x) = The standard deviation of x.

The expression matrix is sparse, however, and computing the rank −→rx of a gene X

would result in a non-sparse vector. Instead, a transformed rank sX is computed

(Equation 4.2) such that cov(−→rx, −→ry) = cov(−→sx, −→sy) and sd(−→rx) = sd(−→sx). In practice, the

expression values are strictly non-negative, but this solution generalises to matrices

where negative values are allowed. Calculating the covariance and standard deviation

of sparse vectors is relatively trivial.

sx,g =

0 if Ex,g = 0

rx,g − Nx + (Tx,g + Zx)/2 if Ex,g > 0

rx,g − Nx + (Tx,g − Zx)/2 if Ex,g < 0

(4.2)

with Ex,g = the expression value of gene g in cell x

rx,g = the rank of Ex,g in
−→
Ex

Nx = the number of negative values in
−→
Ex,

Zx = the number of zero values in
−→
Ex,

Tx,g = the number of values equal to Ex,g in
−→
Ex,

The distance can be computed using the calculate_distance() function from the

CRAN package dynutils. This function is a wrapper for calculating the transformed

rank on a sparse matrix, and calculating the Pearson correlation using proxyC.

4.4.2 Landmark Multi-Dimensional Scaling

Landmark MDS [15] is an extension of classical Torgerson MDS [6]. Classical MDS

requires the computation of the distance matrix between all pairs of cells, which does

Page 126 Paulina, like a soft summer wind you passed through our lives.
Thanks for putting so many healthy “vege-tables” and strange Polish delicacies in our fridge,

https://cran.r-project.org/package=proxyC

4

SCORPIUS: Fast, accurate, and robust single-cell pseudotime.

not scale well to large datasets. Instead, Landmark MDS only computes the pairwise

distances between a small set of landmark cells (which should be representative of

the whole population), and project all other cells to the landmark space. Landmark

MDS is computed using the lmds() function from the CRAN package lmds.

4.4.3 Approximated Principal Curves

A principal curve is a smooth one-dimensional curve that passes through the middle

of the dimensionality reduction [7]. To best fit the data, the curve is first initialised

by k-means clustering the data into k clusters and calculating the shortest path going

through each of the cluster centres. The curve is then iteratively refined by smoothing

the coordinates curve in function of the distance from the start, and then orthogonally

projecting all cells to the curve. The next iteration uses the curve defined by the

segments spanned between the projections of the cells. The distance of a cell from

the start of the curve is called its pseudotime.

In the original implementation of the principal curves algorithm, the curve would con-

sist of N − 1 segments for a dataset containing N cells; thus the algorithm would not

scale well to large datasets. After the smoothing step, a simplification of the curve has

been added such that the curve is approximated by a fixed number of segments. The

principal curve algorithm is implemented in the principal_curve() function from the

CRAN package princurve.

4.4.4 Gene Importances

Gene importances are calculated by training a Random Forest [16] to predict the pseu-

dotime values from the expression values in the dataset. The algorithm intrinsically

computes a feature importance score which ranks the genes in terms of how well a

feature is able to predict the pseudotime values. For computing the gene importance

values, the ranger() function from the CRAN package ranger is used [17].

4.4.5 Datasets and benchmark results

The results of the benchmark analysis were obtained directly from the benchmark

of 45 TI methods [4], available at github.com/dynverse/dynbenchmark_results. The

accuracy, scalability, stability and usability metrics are described by Saelens et al. [4].

All datasets were obtained from a repository of single-cell omics datasets containing

a trajectory hosted on Zenodo record number 1443566 [18].

for cycling together to work, and for making weird noises at Remi.
I look forward to the next time we meet; you will be amazed at how much Remi has grown.

Page 127

https://cran.r-project.org/package=lmds
https://cran.r-project.org/package=princurve
https://cran.r-project.org/package=ranger
https://github.com/dynverse/dynbenchmark_results

SCORPIUS: Fast, accurate, and robust single-cell pseudotime.

4
4.4.6 Measurement of protein synthesis

O-Propargyl Puromycin (Jena Bioscience - NU-931-5) was dissolved in DMSO, further

diluted in PBS (10 mg mL−1) and injected intraperitoneally (50mg per kgmouseweight).

1 hour after injection mice were euthanized by cervical dislocation and hind bones

were collected. Bone marrow cells were obtained by crushing of bones with pestle

and mortar and subsequent lysis of red blood cells. The remaining cells were filtered

through a 70 ţm mesh and resuspended in a Ca^{2+} and Mg^{2+} free phosphate

buffered solution (PBS; Gibco). Viable cell numbers were assessed with a FACS Verse

(BD Biosciences).

7 × 106 cells were stained with mixtures of antibodies directed against cell surface

markers. Each staining lasted approximately 30 min and was performed on ice

protected from direct light. Monoclonal antibodies labeled with fluorochromes or

biotin recognizing following surface markers were used: CD3 (145-2C11; Tonbo),

TCRb (H57-597; BD Pharmingen), CD4 (RM4-5; eBioscience), CD8a (53-6.7; BD

Pharmingen), CD19 (1D3; Tonbo), CD45R (RA3-6B2; BD-Pharmingen), TER119

(TER119; eBioscience), Ly-6G (1A8; BD-Pharmingen), NK1.1 (PK136; eBioscience),

F4/80 (BM8; eBioscience), CD11c (N418; eBioscience), MHCII (M5/114.15.2; eBio-

science), CD135 (A2F10; eBioscience), CD172a (P84; eBioscience), CD45 (30-F11;

eBioscience), SiglecH (eBio440c; eBioscience), Ly-6C (HK1.4; eBioscience), CD115

(AFS98; eBioscience), CD117 (2B8; eBioscience), CD127 (SB/199; BD-Pharmingen),

Ly-6A/E (D7; eBioscience), CD34(RAM34; eBioscience), CD11b (M1/70; BD Pharmin-

gen). Viable cells were discriminated by the use of the fixable viability dye eFluor506

or eFluor786 (eBioscience).

Next, cells were fixed and permeabilized using the FoxP3 Fixation/Permeabilization kit

(eBioscience, 00-5521-00). For OP-Puro labeling, Azide-AF647 is chemically linked

to OP-Puro is through a copper-catalyzed azide–alkyne cyloaddition. In short, 2.5 ţM
azide-AF647 (Invitrogen, A10277) is dissolved in the Click-iT Cell Reaction Buffer (In-

vitrogen, C10269) containing 400 µM CuSO_4. Immediately after preparation, cells

are incubated with this mixture at room temperature. After 10 min incubation, the re-

action is quenched by addition of PBS supplemented with 5% heat-inactivated fetal

calf serum (FCS; Sigma) and 5 mM EDTA (Lonza; 51234). Cells are washed twice to

remove unbound azide-AF647. A Fortessa X20 (BD Biosciences) was used for data

acquisition and data was analyzed using FlowJo 10 (LLC).

4.4.7 Code availability

SCORPIUS is available as an open source software package on CRAN. All code used

in this study is made publicly available at github.com/rcannood/scorpius_analysis.

Page 128 A big thank you to all the Dambini’s for taking care of me while I was hard at work:
An,ArS,ArG,Art,C,D,H,I,Ja,Jon,Jor,Ka,Ke,Li,Lo,M,N,Pa,Pi,Q,RVd,RB,Ru,Sa,Sl,So,St,W,Y.

https://cran.r-project.org/package=SCORPIUS
https://github.com/rcannood/scorpius_analysis

4

SCORPIUS: Fast, accurate, and robust single-cell pseudotime.

4.5 References

[1] Martin Etzrodt, Max Endele, and Timm Schroeder. “Quantitative Single-Cell

Approaches to Stem Cell Research”. In: Cell Stem Cell 15.5 (2014), pp. 546–

558.

[2] Amos Tanay and Aviv Regev. “Scaling Single-Cell Genomics fromPhenomenol-

ogy to Mechanism”. In: Nature 541.7637 (Jan. 2017), nature21350. ISSN: 1476-

4687. DOI: 10.1038/nature21350.

[3] Robrecht Cannoodt, Wouter Saelens, and Yvan Saeys. “Computational Meth-

ods for Trajectory Inference from Single-Cell Transcriptomics”. In: European

Journal of Immunology 46.11 (Nov. 1, 2016), pp. 2496–2506. ISSN: 1521-4141.

DOI: 10.1002/eji.201646347.

[4] Wouter Saelens et al. “A Comparison of Single-Cell Trajectory Inference

Methods”. In: Nature Biotechnology 37 (May 2019). ISSN: 15461696. DOI:

10.1038/s41587-019-0071-9.

[5] Andreas Schlitzer et al. “Identification of cDC1- and cDC2-Committed DC Pro-

genitors Reveals Early Lineage Priming at the Common DC Progenitor Stage

in the Bone Marrow”. In: Nature Immunology 16.7 (July 2015), pp. 718–728.

ISSN: 1529-2916. DOI: 10.1038/ni.3200.

[6] Warren S Torgerson. Theory and Methods of Scaling. John Wiley & Sons, 1958.

[7] Trevor Hastie and Werner Stuetzle. “Principal Curves”. In: Journal of the Amer-

ican Statistical Association 84.406 (1989), pp. 502–516. ISSN: 01621459. DOI:

10.2307/2289936.

[8] Leo Breiman. “Random Forests”. In: Machine Learning 45 (2001), pp. 5–32.

[9] Miriam Merad et al. “The Dendritic Cell Lineage: Ontogeny and Function of

Dendritic Cells and Their Subsets in the Steady State and the Inflamed Setting.”.

In: Annual review of immunology 31 (2013), pp. 563–604. ISSN: 1545-3278.

DOI: 10.1146/annurev-immunol-020711-074950. pmid: 23516985.

[10] Jennifer C Miller et al. “Deciphering the Transcriptional Network of the Den-

dritic Cell Lineage”. In: Nature Immunology 13.9 (2012), pp. 888–899. ISSN:

1529-2908. DOI: 10.1038/ni.2370. pmid: 22797772.

[11] Robert A J Signer et al. “Haematopoietic StemCells Require a Highly Regulated

Protein Synthesis Rate.”. In: Nature 509.7498 (2014), pp. 49–54. ISSN: 1476-

4687. DOI: 10.1038/nature13035. pmid: 24670665.

[12] Pablo Vargas et al. “Innate Control of Actin Nucleation Determines Two

Distinct Migration Behaviours in Dendritic Cells.”. In: Nature cell biology 18.1

(2016), pp. 43–53. ISSN: 1476-4679. DOI: 10.1038/ncb3284. pmid: 26641718.

[13] Zhenzhen Liu and Paul A. Roche. “Macropinocytosis in Phagocytes: Regula-

tion of MHC Class-II-Restricted Antigen Presentation in Dendritic Cells”. In:

I’m grateful to be part of such a dynamic and fun group;
you make hard work at the VIB feel like a walk in the park.

Page 129

https://doi.org/10.1038/nature21350
https://doi.org/10.1002/eji.201646347
https://doi.org/10.1038/s41587-019-0071-9
https://doi.org/10.1038/ni.3200
https://doi.org/10.2307/2289936
https://doi.org/10.1146/annurev-immunol-020711-074950
23516985
https://doi.org/10.1038/ni.2370
22797772
https://doi.org/10.1038/nature13035
24670665
https://doi.org/10.1038/ncb3284
26641718

SCORPIUS: Fast, accurate, and robust single-cell pseudotime.

4

Frontiers in Physiology 6 (JAN 2015), pp. 1–6. ISSN: 1664042X. DOI: 10.3389/

fphys.2015.00001. pmid: 25688210.

[14] Ralph M Steinman. “The Dendritic Cell System”. In: (1991), pp. 203–208.

[15] Vin de Silva and Joshua B Tenenbaum. “Sparse Multidimensional Scaling Using

Landmark Points”. In: Technical report, Stanford University (2004), p. 41.

[16] L Breiman et al. Classification and Regression Trees. Wadsworth Publishing

Company, 1984.

[17] Marvin N Wright and Andreas Ziegler. “Ranger: A Fast Implementation of Ran-

dom Forests for High Dimensional Data in C++ and R”. In: Journal of Statistical

Software 77.1 (Mar. 2017). DOI: 10.18637/jss.v077.i01.

[18] Robrecht Cannoodt et al. “Single-Cell -Omics Datasets Containing a

Trajectory”. In: Zenodo (Oct. 2018). DOI: 10.5281/zenodo.1211532.

Page 130 Go to the next chapter for more acknowledgements.

https://doi.org/10.3389/fphys.2015.00001
https://doi.org/10.3389/fphys.2015.00001
25688210
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.5281/zenodo.1211532

5 | dyno: A toolkit for inferring and inter-

preting trajectories

Abstract

Purpose: Recent technological advances allow studying dynamic pro-

cesses by computationally ordering single-cell omics profiles along a

trajectory. Since 2014, at least 75 tools for trajectory inference have

been developed. For end-users, however, these methods are difficult to

execute and compare, mainly due to high variability in input/output data

structures, software requirements, and programming interfaces.

Results: We developed dyno, a toolkit for inferring, visualising and inter-

preting single-cell trajectories, giving access to more than 50 TI methods.

dyno provides downstream analyses such as visualising the trajectory with

dot-plots or heatmaps, automated labelling using gene sets, automated

inference of the directionality, and detecting genes that are differentially

expressed along the trajectory.

Conclusion: By providing a uniform interface for executing and visual-

ising trajectories of 50 methods, dyno allows inferring and comparing

trajectories for a much broader audience than previously possible.

Publication status

Manuscript in preparation.

Cannoodt R∗, Saelens W∗, and Saeys Y.
∗ Equal contribution

Author contributions

• R.C. and W.S. designed the project.

• R.C. and W.S. implemented software packages.

• R.C. and W.S. wrote the original manuscript.

• Y.S. supervised the project.

Page 131

dyno: A toolkit for inferring and interpreting trajectories.

5
5.1 Introduction

Recent technological advances allow unbiased investigation of cellular dynamic pro-

cesses in a high-throughput manner [1, 2]. Trajectory inference (TI) methods aim to

give insight into a dynamic process by inferring a trajectory fromomics profiles of cells

in which the dynamic process takes place [3]. In a recent study, we benchmarked 45

TI methods in terms of their accuracy, scalability, stability, and robustness [4]. We con-

struct a set of guidelines to help end-users select an appropriate TI method for their

dataset of interest. However, executing and comparing multiple methods remains

challenging, due to high variability in input/output data structures, software require-

ments, and programming interfaces.

We developed dyno, a toolkit to easily infer, visualise and interpret single-cell trajec-

tories. The user can select the most optimal set of TI methods based on characteris-

tics of the dataset and user preferences. More than 50 TI methods can easily be run

within a common interface, and the outputs thereof are converted into a common

format. dyno provides downstream analysis such as: visualising a trajectory in a low-

dimensional space or a heatmap, detecting genes differentially expressed at different

stages of the tragectory, comparing multiple trajectories in a common dimensionality

reduction, and manipulating the trajectory such as adding directionality or labelling

different cell stages.

5.2 Results

This section will present the various components in the dyno workflow (Figure 5.1).

5.2.1 Preparing the dataset

In order to use your dataset of interest, you will first need to wrap it in a dynwrap

object. We will use a commonly used dataset of 392 mouse embryonic fibroblasts

(MEF) undergoing direct reprogramming to induced neuronal cells [5]. By wrapping

the counts information and possible prior information (e.g. known cell types, a start

cell, time course information) into a dynwrap object, the dataset can be used as input

for the various dyno components.

Page 132 Because relaxing is as important as work,
a special thanks to a selection of the friends and family.

5

dyno: A toolkit for inferring and interpreting trajectories.

Method selection Method execution Single-cell dataset
dynguidelines dynmethods

Rooting & labelling

x

y

▶

dynwrap

Feature selection

dynfeature

Visualisation

dynplot

Visualisation

Figure 5.1: The dyno workflow for inferring, visualising and interpreting single-cell trajec-
tories. dynguidelines allows you to choose a suitable TI method for your dataset of interest.
dynmethods contains wrappers for ‘r dynmethods::methods dynwrap provides main functionality
for (pre/post-)processing trajectory data structures. dynfeature calculates gene importance scores
based on a trajectory. dynplot provides visualisation tools for trajectories, including scatterplots
and heatmaps.

5.2.2 Selecting the best methods for a dataset

We performed a comparative study of 45 trajectory inference methods [4]. We evalu-

ated each method in terms of four main aspects:

• Accuracy: How similar is the inferred trajectory to the “true” (or “expected”) tra-

jectory in the data. We used several metrics in order to assess similarity in pair-

wise cellular ordering and also the similarity in topology of the trajectories. We

used both real datasets – which has the highest biological relevance – and syn-

thetic datasets – which allow to push methods to their limits more easily.

• Scalability: How long the method takes to run and how much memory it con-

sumes. Thismainly depends on the dimensions of the input data, i.e. the number

of cells and features.

• Stability: How stable the results are when rerunning the method with slightly

different input data.

• Usability: The quality of the corresponding documentation, software package,

and manuscript. We assessed how easy it is to run the method, whether the

software adheres to good software development practices, and whether the

manuscript follows good scientific practices. We reviewed ‘good practices’ lit-

erature and created a ‘consensus’ score-sheet of good practices, and filled in to

what extent each method adhered to each of the good practices.

We found a high diversity in method performance, and that not many methods per-

formwell across the board. The performance of amethod depended onmany factors,

mainly the dimensions of the data and the kind of trajectory present in the data. Based

Laure, Michael, Jasper & Lize, thank you for the haut cuisine fun veggie nights. Page 133

dyno: A toolkit for inferring and interpreting trajectories.

5

on this, we developed an interactive Shiny [6] app which can be used to explore the

results and select an optimal set of methods for a particular analysis (Figure 5.2).

Figure 5.2: A static screenshot of the dynguidelines Shiny interface.

5.2.3 Inferring trajectories

There are over 50 TI methods available as part of dynmethods, and executing a TI

method on a dataset of interest is as simple as running just one command. Behind

the screens, dyno will save the dataset, prior information and parameters as an H5

file and execute a container containing the desired TI method. This ensures that the

TI method will not have any issues due to software compatibilities on the host envi-

ronment. The first time a TI method is run, it will automatically download the corre-

sponding container from Docker Hub.

We inferred a trajectory on the dataset ofmouse embryonic fibroblasts using the Sling-

shot [7] approach. The outputted model contains the main information on the trajec-

tory, namely the milestone network and cell progressions (Table 5.1). These data are

hard to interpret manually. Luckily, dyno provides many different visualisation func-

tions for interpreting trajectories.

5.2.4 Execution details

Prior information: The method will error if it requires some prior information that

is not already provided in the dataset. Take note that the stronger the assumed priors

for a given method, the more biased the output will be (Table 5.2).

Reproducibility: When using this framework for analysing real data, remember to

set the seed to ensure reproducibility.

Page 134 Joke, Niels & Kai, thank you for exploring dungeons with trolls and lizards together.

5

dyno: A toolkit for inferring and interpreting trajectories.

Table 5.1: The minimum amount of information to define a trajectory.

Milestone network:

from to length directed

5 1 13.828399 TRUE
1 2 4.853443 TRUE
2 3 11.325468 TRUE
2 4 14.022826 TRUE

Cell progressions:

cell_id from to percentage

1_iN1_C04 2 3 0.3508990
1_iN1_C05 2 3 0.5287099
1_iN1_C07 1 2 0.1953806
1_iN1_C08 2 3 0.8589863
1_iN1_C09 1 2 0.9076217
1_iN1_C10 1 2 0.4170644
1_iN1_C11 2 3 0.7316277
1_iN1_C12 1 2 0.7108862
1_iN1_C13 1 2 0.0644059
1_iN1_C14 1 2 0.7178277

…

Table 5.2: Possible prior information accepted or required by TI methods.

Name Description Type

Start cell(s) One or more start cell identifiers soft
End cell(s) One or more end cell identifiers soft
end states The number of end states soft
start states The number of start states soft
leaves The number of leaves soft

Cell clustering Named character vector linking the cell identifiers to different
states/branches

hard

states Number of states/branches, including start, end and intermediary
states

soft

State network Dataframe containing the known network between
states/branches. Contains a from and to column

hard

Time course (continuous) Named numeric vector linking the cell ids to time points hard
Time course (discrete) Named numeric vector linking the cell ids to time course points hard

Marker genes Genes/features known to be important in the dynamic process soft

Marta, Jan, Tristan & Rafaël, thank you for the many tasty brunches and classy parties. Page 135

dyno: A toolkit for inferring and interpreting trajectories.

5

Multiple executions: Often it is useful to run multiple methods and/or use multiple

datasets. While you can easily parallelise this yourself, we provide a helper function

which integrates well with our visualisation functions.

Errors: Somemethods can generate errors which are beyond our control. To know

what and where a method generated an error, remember to turn on the verbosity.

Command-line: Each method is also executable from command-line using the

Docker container. Check out the help documentation by running a TI method con-

tainer without extra arguments.

5.2.5 Visualising trajectories

The most common way to visualise a trajectory is to plot it on a dimensionality re-

duction of the cells (Figure 5.3A). Often (but not always), a TI method will already

output a dimensionality reduction itself, which was used to construct the trajectory.

dynplot will use this dimensionality reduction if available, otherwise it will calculate a

dimensionality reduction under the hood. You can also supply it with your own di-

mensionality reduction. In this case, the trajectory will be projected onto this dimen-

sionality reduction (Figure 5.3B). On this plot, you can colour the cells using various

layers of information (Figure 5.4): cell ordering, cell grouping, feature expression, and

pseudotime.

A B

Figure 5.3: A: Often, the TI method provides its own dimensionality reduction for the trajectory,
which will be plotted by default. This is a visualisation of Slingshot [7] executed on MEF cells
from the previous example. B: Alternatively, you can provide your own dimensionality reduction,
and the trajectory will be projected to it. In this example the Slingshot trajectory is projected to
a UMAP dimensionality reduction [8].

Page 136 Mara Marrainne, Sepperd & Alice, thank you for all
the unforgettable family moments with our cute kids.

5

dyno: A toolkit for inferring and interpreting trajectories.

grouping
d2_induced

d2_intermediate

d5_earlyiN

d5_intermediate

MEF

Myocyte

Neuron

0.0 2.5 5.0 7.5 10.0
Tpm2 expression

0 10 20 30
pseudotime

Cell ordering Cell grouping

Tpm2 expression Pseudotime

Figure 5.4: Cell ordering: Cells are coloured by their proximity to the different milestones. Cell
grouping: A given character vector mapping a cell to a group. Feature expression: Colour
by the expression levels of a particular gene. Pseudotime: The distance to a particular root
milestone.

Various layout and colouring options: To visualise a trajectory, it is good practice

to take into account what the purpose and intended message of the visualisation is

(Figure 5.5). The cells and trajectory can be positioned to place more emphasis on

the topology of the inferred trajectory, or on the cellular heterogeneity between the

cells, that the trajectory might or might not have been able to detect. Cells and trajec-

tory can be coloured according to the topology of the trajectory, according to gene

expression, or a custom input vector of values.

Visualising many genes along a trajectory: A one-dimensional visualisation is es-

pecially useful if you combine it with a heatmap (Figure 5.6).

Comparing multiple trajectories: Visualising each method with their own di-

mensionality reduction can make it hard to interpret to what extend the methods

agree/disagree with each-other (Figure 5.7A). Different trajectories become no-

ticeably more comparable when projected to a common dimensionality reduction

(Figure 5.7B).

Daan, Mieke & Lou, thank you for taking matters in your own hands
and upgrading our friendship status into family.

Page 137

dyno: A toolkit for inferring and interpreting trajectories.

5
Color

Position

Ordering Cell grouping Feature expression Pseudotime

Dendrogram

Onedim

| | | | | | | |

Graph

Dimensionality reduction

Figure 5.5: Overview of the different combinations of positioning and colouring options, demon-
strated on the output of Slingshot [7].

| |

1 2 3 45

Hmga1−rs1
Eif5a

Pa2g4
Ldha

Gm5506
Ddx39
Fxyd5
Il1rl1

Serpine1
Plaur

Arhgdib
S100a4

Cav1
Tm4sf1
Hmga2

Rrm2
Tagln2
Timp1
Cd44

Anxa3
Fam198b

Ptrf
Anxa1
Tpm4
Cnn2

S100a6
Vim

Fstl1
Col1a2

Bgn
Marcks
Stmn1
Tpm1

Hspb8
Tpm2
Acta1
Tnnc1

Pgam2
Tnnt3
Tnni1
Tnnt2
Asph

Tnnc2
Ldb3

Itgb1bp2
Kbtbd10

Myl1
Mybpc1
Cox6a2
Kbtbd5

Ascl1
Arl6ip1
Cdkn1c
Pea15a

Snrpn
Inpp5f
Ndrg4
Bex2

Stmn3
Snap25

Figure 5.6: Selecting relevant features for this heatmap is discussed in a later section, By default,
features will be selected that best explain the main differences over the whole trajectory.

Page 138 Sophie and Marc, thank you for entertaining Caro
while Elias, Charlotte and I play Minecraft together.

5

dyno: A toolkit for inferring and interpreting trajectories.

A Slingshot PAGA SCORPIUS

Monocle DDRTree pCreode

B Slingshot PAGA SCORPIUS

Monocle DDRTree pCreode

Figure 5.7: A: Comparing outputs of multiple TI methods is tedious when they are each visualised
using their own visualisation method of interest. B: In contrast, by projecting each output to
the same dimensionality reduction, the methods become immediately visually comparable.

5.2.6 Manipulating the trajectory

dyno allows manipulating trajectories by simplifying, rooting and annotating them.

Simplifying linear segments: Intermediate milestones can be removed by simplify-

ing the trajectory (Figure 5.8A).

Rooting: Most TI methods return undirected trajectories. We provide two ways of

rooting a trajectory, namely by manually specifying the root milestone, or by specify-

ing highly expressed marker genes. After rooting, all other edges will point away from

the root (Figure 5.8B).

Bart, thank you for being such a good friend
and listening to me when I needed it the most.

Page 139

dyno: A toolkit for inferring and interpreting trajectories.

5

A

5 11
22 32

4

2 32

4

5 2

Original Simplified

B

2 32

4

5 2 322

4

25

Original Manual rooting at 3

C

MEFInducedInduced

Neuron

Induced
Myocyte

Manual labelling

Figure 5.8: A: Simplification of the trajectory. B: Rooting the trajectory. C: Labelling the
trajectory.

Annotating the trajectory: Similar as with rooting, annotating the trajectory by re-

naming the milestones can be done either manually, or with given highly expressed

gene sets (Figure 5.8C).

5.2.7 Differentially expressed genes along the trajectory

Compared to differential expression between clusters of cells, defining differential

expression on trajectories is not so straightforward. What constitutes a trajectory dif-

ferentially expressed gene?

• A gene that is uniquely expressed in a particular branch?

• A gene that changes at a branching point?

• A gene that changes along pseudotime?

dynfeature allows you to find these different kinds of differential expression in a tra-

jectory. It first defines a particular variable that needs to be predicted (for example,

Page 140 Miriam, thank you for always being there for us,
during the good times but also during times of need.

5

dyno: A toolkit for inferring and interpreting trajectories.

feature_id from to importance

Cav1 3 2 3.289198
S100a6 3 2 2.942703
1810020D17Rik 2 5 2.822247
Tagln2 3 2 2.763266
Bex2 2 4 2.672312

Anxa3 3 2 2.630013
Tm4sf1 3 2 2.547472
Vim 3 2 2.431169
Hmga2 3 2 2.376114
Rrm2 3 2 2.346754

| |
Induced Neuron MyocyteMEF

Ascl1
Cks1b

Birc5
2810417H13Rik

Cdca3
Ccnb1
Cenpa
Pa2g4

Gm5506
Ptrf

Ddx39
Fbln2

Msn
Lox

Tspo
Tpm4
Cnn2

S100a6
Vim

Capg
Fxyd5
Il1rl1

Serpine1
Plaur
Gja1

Prss23
Anxa1
Cd44

Hmga2
Rrm2

Tagln2
Timp1

Gm14005
Arhgdib
S100a4

Cav1
Tm4sf1

Thbs1
Anxa3

Fam198b

Candidate marker genes for the MEF−>Induced transition

Figure 5.9: Candidate markers genes for the MEF → transition.

milestone_id feature_id importance

2 S100a6 2.654416
2 Cav1 2.567051
2 Tagln2 2.501074
2 Fam198b 2.334142
2 Timp1 2.056474

2 Anxa3 2.009431
2 Tm4sf1 1.982274
2 Vim 1.833045
2 Bex2 1.738471
2 Rrm2 1.678349

| |
Induced Neuron MyocyteMEF

Cks1b
Cenpa
Rrm2

2810417H13Rik
Ddx39
Tmed5

Gja1
Hmga2

Il1rl1
Serpine1

Plaur
Fam198b

Anxa3
Cd44

Tagln2
Timp1
Thbs1

Arhgdib
S100a4

Cav1
Tm4sf1

Msn
Tspo

Tpm4
Cnn2

S100a6
Vim
Ptrf

Anxa1
Prss23

1810020D17Rik
Ascl1
Syt11
Bex2

Uchl1
Ndrg4

AI593442
Syt4

Snap25
Stmn3

Candidate marker genes for the Induced milestone

Figure 5.10: Candidate markers genes for the ’induced’ milestone.

whether a cell is present in a branch or not), and ranks each gene based on their pre-

dictive capability with respect to that variable. This section reviews the types of feature

selection supported by dynfeature.

Lineage / transition marker genes: We can identify genes that are specifically up-

regulated or downregulated at a specific branch (Figure 5.9).

Milestonemarker genes: We can identify genes that are specifically upregulated or

downregulated at a particular milestone (Figure 5.10).

Marker genes for the trajectory as a whole: We can identify genes that change in

function of the ordering of a part of the trajectory (Figure 5.11).

5.3 Discussion

With dyno, we provide a feature-complete toolbox for inferring, visualising and anno-

tating trajectory data. In this work, we demonstrated its usefulness by applying all of

As part of our family, there will always be a spot for you in our house.
Let it be a while until one of us has to organise another reception.

Page 141

dyno: A toolkit for inferring and interpreting trajectories.

5
feature_id importance

Tpm2 0.4539798
Tagln2 0.3364078
Vim 0.3319566
Plaur 0.3252199
Cav1 0.3224918

Hmga2 0.3189412
Ptrf 0.3180152
Tnnc2 0.3092800
Acta1 0.3087145
Myl1 0.3014400

| |

Induced Neuron MyocyteMEF

Fstl1
Sparc

Col1a2
Bgn

Hmga1−rs1
Pa2g4

Ldha
Gm5506

Ddx39
Fxyd5
Il1rl1
Plaur

Serpine1
Fam198b

Anxa3
Arhgdib
S100a4

Cav1
Tm4sf1
Hmga2

Rrm2
Tagln2
Timp1

Ptrf
Anxa1
Tpm4
Cnn2

Vim
S100a6

Tpm1
Hspb8
Tpm2
Acta1

Cox8b
Pgam2

Tnnt3
Tnni1
Tnnt2
Asph

Kbtbd5
Cox6a2

Mylpf
Tnnc2

Itgb1bp2
Ldb3

Kbtbd10
Myl1

Mybpc1
Inpp5f
Ndrg4

Zcchc12
Stmn3

Snap25
Syt11
Bex2

Uchl1
Ascl1

Id2
Cdkn1c

Mest

Overall important features

Figure 5.11: Candidate markers genes for the overall trajectory.

its visualisation and manipulation functionality on a particular dataset.

Alternative modalities such as ATAC-Seq or cytometry data are not yet supported, al-

though it is possible to simply include this data as expression and counts. RNA velocity

[9] would be particularly useful, as it would allow rooting the directory without any fur-

ther input from the user.

We are also planning to implement additional tools for interpreting the trajectories,

such as alignment and differential expression. While the feature importance tools are

incredibly useful towards interpreting trajectories, they do not yet provide a statistical

ground to find features which are significantly differentially expressed. In addition,

depending on the size of the dataset and of the predicted trajectory, it might take a

long time to compute.

Page 142 Cedric, no time difference or distance can keep us apart,
or change our habit of forgetting the world around us during our gaming and conversations.

5

dyno: A toolkit for inferring and interpreting trajectories.

5.4 References

[1] Amos Tanay and Aviv Regev. “Scaling Single-Cell Genomics fromPhenomenol-

ogy to Mechanism”. In: Nature 541.7637 (Jan. 2017), nature21350. ISSN: 1476-

4687. DOI: 10.1038/nature21350.

[2] Martin Etzrodt, Max Endele, and Timm Schroeder. “Quantitative Single-Cell

Approaches to Stem Cell Research”. In: Cell Stem Cell 15.5 (2014), pp. 546–

558.

[3] Robrecht Cannoodt, Wouter Saelens, and Yvan Saeys. “Computational Meth-

ods for Trajectory Inference from Single-Cell Transcriptomics”. In: European

Journal of Immunology 46.11 (Nov. 1, 2016), pp. 2496–2506. ISSN: 1521-4141.

DOI: 10.1002/eji.201646347.

[4] Wouter Saelens et al. “A Comparison of Single-Cell Trajectory Inference

Methods”. In: Nature Biotechnology 37 (May 2019). ISSN: 15461696. DOI:

10.1038/s41587-019-0071-9.

[5] Barbara Treutlein et al. “Dissecting Direct Reprogramming from Fibroblast to

Neuron Using Single-Cell RNA-Seq”. In: Nature 534.7607 (2016), pp. 391–395.

[6] Rstudio. “A Web Application Framework for R”. In: (2016).

[7] Kelly Street et al. “Slingshot: Cell Lineage and Pseudotime Inference for Single-

Cell Transcriptomics”. In: BMC Genomics 19.1 (June 2018), p. 477. ISSN: 1471-

2164. DOI: 10.1186/s12864-018-4772-0.

[8] Leland McInnes, John Healy, and James Melville. “UMAP: Uniform Manifold

Approximation and Projection for Dimension Reduction”. In: (2018).

[9] Gioele La Manno et al. “RNA Velocity of Single Cells”. In:Nature 560.7719 (Aug.

2018), pp. 494–498. ISSN: 1476-4687. DOI: 10.1038/s41586-018-0414-6.

놀라운 사람과 최고의 친구가되어 주셔서 감사합니다 Page 143

https://doi.org/10.1038/nature21350
https://doi.org/10.1002/eji.201646347
https://doi.org/10.1038/s41587-019-0071-9
https://doi.org/10.1186/s12864-018-4772-0
https://doi.org/10.1038/s41586-018-0414-6

6 | bred: Inferring single cell regulatory net-

works

Abstract

Purpose: Network inference methods are computational tools which use

large omics datasets to predict which genes are regulated by which tran-

scription factors. Since regulatory interactions are context-dependent, at-

tempting to model regulatory dynamics in the form of a single regulatory

network may have little relevance.

Results: In this work, we introduce bred, the first algorithm for inferring

case-wise regulatory networks. Analysing case-wise regulatory networks

of 14’963 profiles from The Cancer Genome Atlas project demonstrated

that regulatory interactions are often specific to particular cancer types,

but can also be shared between several cancer types.

Conclusion: Ultimately, this analysis has resulted in a list of candidate

oncogenic genes and interactions per cancer type, though further anal-

ysis and validation is required to confirm their oncogenicity.

Publication status

Manuscript in preparation.

Cannoodt R, Saeys Y∗, and De Preter K∗.
∗ Equal contribution

Author contributions

• R.C., K.D.P., and Y.S. designed the study.

• R.C. performed the experiments and analysed the data.

• R.C. implemented the bred software package.

• R.C. wrote the original manuscript.

• R.C., K.D.P., and Y.S. reviewed and edited the manuscript.

• K.D.P. and Y.S. supervised the project.

Page 145

bred: Inferring single cell regulatory networks.

6
6.1 Introduction

One of the central cellular processes underlying development is transcriptional reg-

ulation. Modelling the dynamics of gene regulation is therefore essential to better

understand why a cellular dynamic processes progresses through several steps, and

what goes wrong in the case of disease. Regulatory dynamics is classically studied us-

ing time series data [1]. When dynamic processes progress asynchronously, such as

in hematopoiesis, time series data are usually obtained by sorting different transition

states and assessing bulk gene expression and transcription factor binding within the

population [2, 3, 4, 5]. Alternatively, time series data can also be generated by syn-

chronising the dynamic process between cells. However, issues with time-resolution,

heterogeneity and good in vivo synchronisation models can often limit the predictive

power of the dynamic models of gene regulation which can be constructed [1].

Network inference (NI) methods are computational tools which use large omics

datasets to predict which genes are regulated by which transcription factors. While

accuracy of the network of predicted regulatory interactions is lower in comparison

to experimental validation techniques, NI methods offer an unbiased and high-

throughput insight into the regulatory dynamics of a biological system. The output of

a network inference is thus a graph, where nodes represent genes and edges denote

a regulatory interaction between a regulator and a target gene. Interactions have

two properties: its regulatory strength (a positive real value) and its effect (promoting

or repressing).

Several studies have highlighted how some regulatory interactions can be very dy-

namic while others show evidence of being static during consecutive developmental

stages [6, 7]. Since regulatory interactions are context-dependent [8], attempting to

create an accurate model of those processes by inferring a static regulatory network

may have limited relevance. Case-wise NI methods1 avoid predicting a static GRN

and instead infer one GRN per cell (or per sample, for bulk omics data).

In order to compute a case-wise GRN for a single sample, Kuijjer et al. [9] and Liu et

al. [10] employ similar strategies, namely by computing the difference of computing

a static GRN for all the cases, and computing a static GRN for all the cases minus

one. Since this procedure needs to be repeated for every case in the dataset, and

because NI methods are already amongst the most computationally intensive anal-

yses to perform on omics data, this methodology is not applicable for large omics

datasets. Another case-wise NI method, SCENIC [11] infers case-wise GRNs by first

inferring a static GRN using GENIE3 [12]. GENIE3 is a static NI method which uses Ran-

dom Forests (RFs) [13] variable importance scores to prioritise candidate regulators for

1Case-wise NI is sometimes also called sample-specific NI or case-specific NI.

Page 146 Big hugs for my family who supported me (Vanessa, Marilou, Franco, Alain,
Luc, Malika, Sien, Silke, Liam, Anne, Patrick, Evelyne, Stefaan, Arne, Laure,

6

bred: Inferring single cell regulatory networks.

a particular target gene. SCENIC then post-processes the static GRN to determine

whether an interaction is enriched for particular cases, resulting in a case-wise GRN.

Thus, while several case-wise NI methods have already been proposed, their imple-

mentation consisted of post-processing a static GRN to arrive at a case-wise GRN. As

such, these methods will most likely recover the interactions that are prevalent in the

whole population, and will miss interactions that are specific to only a sub-population.

In this work, we introduce bred, the first ’true’ case-wise NImethod. It uses amodified

version of the RF variable importance scores used by GENIE3 and SCENIC to compute

importance values for each profile and each interaction separately, as well as predict

the effect of each interaction (activating or repressing). We generate case-wise GRNs

– or case-wise regulomes – for 14’963 profiles fromTheCancer GenomeAtlas (TCGA)

[14], resulting in 6’464’915 predicted case-wise interactions. We analyse these case-

wise regulomes by clustering them and detecting highly activated interactions.

6.2 Results

At the time of writing, the TCGA database contains 14’963 profiles from 44 different

cancer entities. We used the bred algorithm to infer case-wise regulomes for each

of these profiles. In total, we detected 73’140 unique interactions and, on average,

7’231 active interactions per profile. Dimensionality reduction and clustering of the

case-wise regulome data provides a visual overview of the different subpopulations

(Figure 6.1).

For each cluster, we computed the average importance of each interaction. Retain-

ing the 100 strongest interactions (Figure 6.2) shows that different cancer entities

have vastly different regulomes, yet often have shared regulators and interactions (Ta-

ble 6.1).

Performing a more in-depth analysis of particular clusters can reveal distinct sub-

populations within. For example, when comparing samples of normal and healthy

tissue within breast carcinoma (Figure 6.3), a significant number if interactions are

predicted to have been turned off (top), while others have been turned on (middle,

bottom). Similar observations can bemade for other clusters, such as for melanocytic

neoplasm (Figure 6.13) and kidney carcinoma (Figure 6.14).

Paul, Gilbert, Linda, Tania, Dorian, Steven, Joke, Lukas, Lise), and often had to miss me at family parties.Page 147

bred: Inferring single cell regulatory networks.

6

Figure 6.1: Visualisation of 14’963 case-wise regulomes of cancer profiles from The Cancer
Genome Atlas project. Dimensionality reduction of the case-wise regulomes was performed by
applying Fruchterman-Reingold [15] on the k-nearest-neighbour graph (k = 100) of highly similar
regulomes (Spearman correlation). The samples were clustered with Louvain clustering [16] and
each cluster was assigned an ontology term from the NCI thesaurus ontology [17] which best
fits the sample in the cluster. Clusters for which the term has a positive predictive value (PPV)
lower than 0.5 are marked with an asterisk (*). More detailed information on the enrichment of
particular terms or metadata for each of the clusters can be found in Figures 6.6–6.12.

6.3 Discussion

The bred algorithm is a novel approach for directly computing case-wise regulomes

for single-cell omics and bulk omics profiles alike. We used bred to infer case-wise

regulomes for 14’963 cancer profiles from The Cancer Genome Atlas project.

Analysing the results using common omics algorithms (dimensionality reduction,

clustering, enrichment) has shown that regulatory interactions are often specific

to particular cancer types, but can also be shared between several cancer types.

Ultimately, this analysis has resulted in a list of candidate oncogenic genes and

interactions per cancer type, though further analysis and validation is required to

confirm their oncogenicity.

Future perspectives include applying it on single-cell omics data (e.g. from Tabula

Muris [18]) and benchmarking the algorithm against in silico datasets (e.g. produced

by dyngen [19]).

Page 148 To mama and papa Jean Paul, thank you for all your love.
You gave me a carefree youth and a good set of morals,

6

bred: Inferring single cell regulatory networks.

SIT1

ZNF423

IKZF1

NR1H3

CMKLR1

VPREB1

CD79B

BANK1

NCF1C
CD1C

SPIB

IGHV5-78

DTX1

PAX5

IGJ

ENSG00000259772

PIM2

FAM46C

CD1D

TRIB1

LINC01480

IGLJ1

ENSG00000265517

ENSG00000263751

ENSG00000224137

CR2

ENSG00000263413

TCL1A

VPREB3

SP140

TNFRSF13C

CCR7
TNFRSF13B

FDCSP CD19

CD79A
MIR5195

CLECL1

CD72

MS4A1

CD22

MIR4539

FCRL2

POU2F2

KIAA0226L

ZNF101

NAPSB

BTK

IRF8

FAM129C

MEF2B

NUGGC

CCL19

PLA2G2D

FCRLA

IKZF3

ENSG00000275301AIM2
EBF1

DUOXA2

C2orf40

INPP5J DUOXA1

CLIC3

DUOX2
SOX21

CPB1

DIO2

SNX22

FOXE1

SBSN

TMPRSS11D

SPRR1B

CERS3

GBP6

PPP1R13L

IGFL1

MSX2

OVOL1

UPK2

DHRS2

TBX2

KRTDAP

ESRRG

SPINK1

SIM1

UMOD

ESRRB

EMX1

LHX1

ID4

UNCX

TBX3

ZNF750

EVX1

SLC14A1

PPARG
UPK3A

NFE2L2

LCE3D

ADH7

GJB6

ARHGAP36

CRCT1

TFAP2B

ENSG00000168824

TRIB2

TFAP2A

ALX1

BNC2

PLXNC1

ST6GALNAC2

LZTS1

MITF

BIRC7

ETV5

GPR143 DUSP4

FOXD3

RAB38

PAX3
MIA

PMEL

TYRP1

CAPN3

FAM167B

CSPG4
TYR

MLANA

GYG2

ENSG00000256673

S100B

SERPINE2

CABLES1

GAS7

ST3GAL4

PLA1A

RENBP

IGLV1-41

AGTR2

TCF21
CD40

CYP2B7P

CEACAM6

ICAM1
SDR16C5

TBX5

MUC15
DUOX1

LMO3RPS6KA2

PLA2G1B

ATP13A4

FOXA2

LINC00261

NKX2-1

HIRA

PPAP2B

PVALB

EBI3

SCX

MIR155HG

GPX3

CD96

SFTPA2SFTA2

ENSG00000240237

BPIFA1

SFTPD

HOPX

NAPSA
SLC22A31

TG

NPC2

AGER
TBX4

ABCA3
LPCAT1

SCGB1A1

C4BPA

NDNF

PON3

SFTA1P

C16orf89

TREM1

PEBP4

ZCCHC12

SCEL

PGC

SCGB3A1

IGSF1

SLC34A2

CITED1

CYP4B1

FCN3

ST3GAL5

RXRG

BATF

TSHRFOXI1

LCN12

TPO

HNF1B

ENSG00000262198

DMRT2

FOLR1

CLDN16

TFEC

NUS1P2

PAX8

ZNF114

HHEX

ZBED2

ZBTB7C

IYD

HAND2

PHOX2A

TBX20

TLX2

NTRK1
DBH

HAND1

TH

PHOX2B

SPRR1A SCRT1

IL20RB

MYT1L

DUSP26

MYT1

PTPRN

ATCAY

STMN4

RUNDC3A

SCG2

CPLX2
SYP

JPH4
CEND1

BEX1

FOXN1

PAX9

KRT6B

HAS3

S100A2

PTHLH

COL7A1

BNC1

KRT6A

KRT15

SFN

DSG3

CALML3

CLCA2

CAPNS2 DSC3

SERPINB13

TP63

L1CAM

NDRG4

INA

ATP1A3

FAIM2

KIF5A

SYN1

SEZ6L

RGS4

CHGB

STMN2

TMEM130

INSM2

CHGA

INS

GPR87

KRT5

CSTA

HCAR2
LGALS7B

GJB5

FAT2

MIR205HG

IRF6

DDC

INSM1

ISL1

NEUROD4
CARTPT

PENK

TIMP4

LINC00844

GPM6B
NLGN3

BAALC

MLC1

SLC6A1

TTYH1

OLIG2

POU3F2

SOX8

BCAN

ADCYAP1R1
OLIG1

ATP1A2 MBP

CACNG7

FAM107A

NKX6-2

FEZ1

KCNJ10

CSPG5

CTNND2

SLC1A2 SLC1A3

SRI

ASCL1PLP1

GAP43

NCAN

PTPRZ1

SOX2

AQP4

ATP1B2

MT3

PAQR6

FAM181B

GPM6A

RFX4

PROM2

PVRL4

CNKSR1

EPN3

IGKV1D-12

KDF1

MYCL

VSIG2

SP6

UPK3B

FER1L4
IKZF2

GRHL3

AP1M2

OVOL2

GRHL2
ENSG00000261183

PRRG2

ENSG00000257084

RAB25

ENSG00000274173

ESRP1

SOX15

SERPINB5

PKP1

SRC

ZNF385A

ANXA8

PADI3

TRIM29

NKAIN1

CRB3

VGLL1

SLITRK6

GPR110

ELF3

GABRP

ENSG00000275234

UPK1B
ELF5

GRHL1
KLF5 TEAD3

PRSS16

BSPRY

CBFA2T3

TCF7

CCL25

PAX1

HOXC6

HOXC9

HOXC10

HOXC8

HOXC11

HOXA2

HOXA7

HOXA5

HOXA6

HOXA3

HOXA4

HOXA9

HOXA11

HOXA10

HLA-DPA1

HLA-DPB1

HLA-DMA

CIITA

HLA-DRA

CD74

EIF1AY

DDX3Y

RPS4Y1

ZFY

TXLNGY

XIST

KDM5D

DNAJC1
DERL3

SSR4

POU2AF1

DEK

GLMP

FKBP11

ALDH1L2

CPNE5

ZBP1

ZNF275

BMP6

FCRL5

SLAMF7

BHLHA15

SPAG4

ENSG00000234184

HERPUD1
TP53INP1

ELL2

DNAJB9

PRDX4 HID1

SEC11C

GPRC5D
TXNDC5

MEI1

PRDM1

AMPD1

IRF4

ANKRD36BP2

TNFRSF17

FRZB

DUSP5

MIXL1

STEAP1

TMPRSS2

FEV

PDE9A

MYBPC1

PLA2G2A

NEFH

ALDH1A3

ARG2TMSB15A

TRGC2

NAAA

SUSD3

MLPHHOXA13
PPP3CA

SLC45A3

ACPP

ENPP1

TFF1

AR

SPDEF

FOXA1
ZNF350

AGR3

ZG16B

ANKRD30A

GNMT

SPON2

C9orf152

TRGJP2
PDLIM5

LRRC26

MSMB

NKX3-1

CREB3L4

FOLH1

STEAP2

KIAA1324

TRGC1

NWD1HOXB13

ZNF613

PKIB

RPL7P16

ENSG00000234918

ENSG00000244468

ESR1

LINC00993

GATA2

PIP

ATP8A2P1

TRPS1

CYP2T1P

SPTSSB

SNCG

PSCA

STC2

TBC1D9

GATA3

IRX5

SCUBE2

GFRA1

MYB

PRLR

CLSTN2

LMX1B

DESLMOD1

PGM5

SYNPO2

PLN

MYOCD

CNN1

ACTG2

TGFB1I1

FLNA

MYLK

ENSG00000269936

MYH11

GFI1B

HBA2

HBA1

IGHD1-20

CA1

SOX6

GATA1

ALAS2
AHSP

SLC4A1

KLF1

GLYATL1 PDZK1

GBA3

DPYS

UGT2B7
ALDH8A1

APOM
BHMT2

HAVCR1

ACMSD

ENSG00000235142

CYS1

CUBN

TINAG

TMEM27

FMO1

GAL3ST1

HPD

ANGPTL3

HAO2
KHK

LRP2

SLCO4C1

DMGDH

BICC1
TMEM252

SLC17A1

SLC28A1

NAT8

RBP5

NR1H4

FXYD2

POU3F3

SLC17A3

C14orf105

SLC3A1

LINC01320

SLC38A3

HPR

AMBP

NR1I3

RNU1-70P

ASGR2

CREB3L3

UGT2B4

ONECUT1

MLXIPL

CYP2E1

IGFBP1

ADH1A

VTN

AGT

BAAT

FGL1

NR5A2

TFR2

C8G

ASGR1

CFHR1

HPX

IL22RA1

PRAP1
AKR7A3

CLRN3

LGALS4ARL14GATA6

AGXT

HRG

G6PC

PLG

ITIH1

ALB

ITIH3

ITIH2

HNF1A

BAIAP2L2

GLYAT

UGT1A9

GCNT3

ACSM2B

USH1C

HP

MAT1A

SERPIND1

ORM2

ORM1

C4BPB

TF

SLC39A5

PRSS3

CDHR2

FOXA3

PROC

MUC13

ANXA10

ERN2

TRIM31

RNF186

PDX1

PGR

CEACAM7

KLK7

MEP1A

SLC26A3

CCL24

ZNF512B

CEBPE

SPI1

TYROBP

ELANE

MS4A3

AZU1

NFE2

C1orf162

TSPAN8

VIL1
GIPC2

NR1I2

TRIM15HNF4A

SLC2A2

GPA33

CDX2

CDH17

HNF4G

MUC3A

PPP1R14D

S100A9

GPR97
RNASE3

CAMP

CTSG

SERPINB4

DEFA3

ANXA3

LTF

S100A8

ISX

DEFA4

FOXN4

SPRR2F

CTCFL

S100A7

S100A12

ASCL2

CDX1

MUC2

HEPH

MYRF

CDHR5

ATOH1

ITLN1

ATP10B MYO7B

SPINK4

C20orf85

ADRA2C

LGR5

CLDN6

ATP6V1B1

BMPR1B-AS1

MECOM

FOXJ1

KCNK15

SPRR2C

FGFR3

EFHD1

NPY1R

SLC39A6

CRNDE

IRX3

CHAD

RERG

MEIS1

RPL41P1

C2orf88

KLK8

NPR1

MSX1

WT1

ENSG00000226532

DLX5

DOK5

CITED4

ACSM2A

SALL1

DLX6
PTGS1

EMX2OS

KLHL14

NPAS3

CCNA1

C1orf186

EMX2

KL

SLC6A13

PAX2

BBOX1

SLC16A12

GALNT14

MIOX

PKHD1

ENSG00000227869

SLC22A2

HOXB7

HOXB4

HOXB8

HOXB5

ENSG00000272763

HOXB3

HOXB9

HOXB2

HOXB-AS3

HOXB6

SCGB1D2

LPAR3

LYPD1

ALPL

ASRGL1

AQP5

EYA2

SCGB2A1

SOX17

SNORD94

SNORA84

SNORD116-13

HIST1H4E

RNU6ATAC

SNORD116-14

ENSG00000261069

SCARNA10

SCARNA13
RN7SL5P

HIST1H3A

HIST2H3D

HIST1H2BO

ENSG00000222489

SNORD116-19
HIST1H3D

ENSG00000278771

HIST1H2AL

RN7SK

RNU1-1_2

ZNF644

HIST1H2AB

HIST1H2AI

MT-ND2

ENSG00000281472

SNORA71D

HIST1H3F

SNORA34

SNORA20

HIST1H1E

SNORD17

MT-ND4

SNORA37

SCARNA7

HIST1H2BL

HIST1H2AJ

HIST2H2AC

HIST1H2BI
ENSG00000252213

HIST1H1BRN7SL396P

RN7SL752P

SCARNA12

HIST1H3J

RN7SL128P
ZNF460

SCARNA5

SCARNA21

POU5F2

HIST1H4A

ENSG00000222586

RN7SL674P

SNORA53
HIST1H4C

ZNF407

RNY1

ZNF124

RN7SKP185

HIST1H3C

MT-ATP8

HIST2H2AB

SNORA22

MT-ND6

HIST1H2AG

HIST1H2BFSNORD15B

RN7SL2

SNORA54

HIST1H4B

SNORA73B

RN7SKP48

HIST1H2AH

HIST1H4D

HIST1H3I

HIST1H2BM

HIST1H3B

MGA

SCARNA6

ZNF805

HIST1H1D

HIST1H3G

MIR5690

SNORA23

NRF1

MIR3609

ENSG00000281855

ENSG00000201343

SNORA12

RNU4-2

SNRPGP18

SNORA80A

SNORA7B

RN7SL4P

TMEM14E

HIST1H3H

ENSG00000280869

RNU4-1RN7SL648P

HIST1H2AM

Mixed

Mixed

Peripheral Nervous
System Disorder

Diffuse Large
B-Cell Lymphoma

Squamous Cell
Carcinoma

THCA
LUAD

Melanocytic
Neoplasm

Male
MM

BL

Diffuse Large
B-Cell Lymphoma

LIHC

Digestive System
Disorder

Kidney
Carcinoma

Glioma

Acute
Leukemia PRAD

BRCA

Transitional
Cell Carcinoma

UCEC

Group

Acute Leukemia

ALL

BL

BRCA

Connective and Soft Tissue Disorder *

CPTAC #1

CPTAC #2

Diffuse Large B−Cell Lymphoma

Digestive System Disorder

Glioma

Kidney Carcinoma

LIHC

LUAD

Melanocytic Neoplasm

MM

Peripheral Nervous System Disorder

PRAD

Squamous Cell Carcinoma

THCA

Transitional Cell Carcinoma

UCEC

Strong positive

Predicted effect

Weak positive

Unclear

Weak negative

Strong negative

Figure 6.2: Visualisation of the strongest interactions per cluster shows both pathways distinct
to particular cancer entities as well as pathways common to multiple cancer entities.

6.4 Methods

6.4.1 Inferring case-wise regulomes

The task of inferring a static GRN (Figure 6.4A) can be reduced to a simpler problem,

namely: for every target T , predict which of the potential regulators Ri regulate T (Fig-

ure 6.4B). This simplification allowed GENIE3 [12] to use Random Forest’s [13] feature

importance scores for inferring GRNs. Namely, a Random Forest is trained to predict

the expression of a target gene of interest from the expression of potential regulators.

The resulting Random Forest inherently allows to extract a feature importance score

by observing the effect of each regulator in making a good prediction for the target

expression. As in GENIE3, the target expression is first scaled to normalise feature

importance scores across different targets.

Wemake the same simplification in order to build case-wise GRNs, also using Random

Forests to compute the feature importance scores. A Random Forest consists of K

trees, each of which produces feature importance scores, and the feature importance

scores of a forest is simply the mean feature importance scores of each of the trees.

Computing the case-wise feature importances of a tree consists of the following 8

steps (Figure 6.5). The ’randomness’ of a Random Forest is in part due to using a subset

and allowed me to study for as long as I liked.
For all these things and so much more, I can never repay you.

Page 149

bred: Inferring single cell regulatory networks.

6
●

●●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

● ●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

● ●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

● ●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

● ●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

● ●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

● ●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

● ●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

● ●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

Group

●

●

●

TCGA−BRCA

TCGA−CESC

TCGA−HNSC

Group

●

●

Alive

Dead

Group

●

●

●

Cancer Metastatic

Cancer Tumor

Normal Tissue

Group

●

●

female

male

DDR2−>CLMP
EBF1−>CXCL12
EBF3−>NGFR
TCEAL7−>IL33
FZD4−>CYYR1
ENPP1−>ISM1
APBB2−>ISM1
ZNF521−>ISM1
FZD1−>ISM1
SAV1−>CLDN8
BHLHE41−>CCL28
BARX2−>CCL28
HLF−>NDRG2
EHF−>GABRP
TFAP2C−>GABRP
RERG−>FMO2
MEOX2−>CLMP
PEG3−>SFRP1
PPAP2B−>CX3CL1
TCEAL7−>PAMR1
RUNX1T1−>PAMR1
PPAP2B−>PAMR1
DDR2−>SYNM
NFIB−>SYNM
TCEAL7−>SYNM
HLF−>SYNM
TCEAL7−>ENSG00000269936
RERG−>ENSG00000269936
PGR−>ENSG00000269936
RUNX1T1−>ENSG00000269936
PGR−>LMOD1
TCEAL7−>LMOD1
PGR−>MYH11
RERG−>MYLK
PGR−>MYLK
TCEAL7−>PPP1R14A
DDR2−>CNN1
TCEAL7−>CNN1
PGR−>CNN1
PTGIS−>CNN1
OSR1−>CNN1
TFAP2B−>STAC2
LTF−>STAC2
FOXI1−>STAC2
GATA3−>STAC2
LMX1B−>STAC2
ANKRD30A−>STAC2
IRX1−>STAC2
ZNF521−>STAC2
C1orf64−>STAC2
TFAP2C−>KRT14
IRX4−>KRT14
TP63−>KRT14
LTF−>GABRP
TRIM29−>GABRP
TFAP2A−>GABRP
FOXI1−>GABRP
ALX4−>IRX1
TFAP2B−>IRX1
TFAP2B−>FGF1
GRHL1−>TP63
TRIM29−>COL17A1
TRIM29−>TNS4
NPAS3−>SFRP1
TCEAL7−>SFRP1
TFAP2B−>SFRP1
LMX1B−>SFRP1
PTGIS−>SFRP1
MEOX1−>SFRP1
TBX3−>SFRP1

FOXA1−>SPDEF
GATA3−>RERG
IRX5−>RERG
LMX1B−>RERG
FOXA1−>TBC1D9
GATA3−>ESR1
GATA3−>PSAT1
IRX5−>GATA3
ZNF552−>GATA3
FOXA1−>GATA3
LMX1B−>GATA3

AEBP1−>ADAM12
SHOX2−>ADAM12
TBX18−>ADAM12
CREB3L1−>ADAM12
ZNF469−>ADAM12
SNAI2−>ADAM12
PRRX1−>ADAM12
DACT1−>ADAM12
PRRX1−>FBN1
BNC2−>FBN1
ZNF521−>FBN1
SNAI2−>ADAMTS2
SNAI2−>COL5A2
PRRX1−>MXRA5
AEBP1−>LRRC15
VDR−>LRRC15
ZNF469−>LRRC15
RUNX2−>LRRC15
PRRX1−>LRRC15
DACT1−>LRRC15
RUNX2−>COL10A1
PRRX1−>COL10A1
AEBP1−>COL10A1
PRRX1−>CLMP
PRRX1−>PDGFRL
SFRP4−>PDGFRL
PRRX1−>CTSK
PRRX1−>SERPINF1
CREB3L1−>DCN
PRRX1−>DCN
PRRX1−>DPT
PRRX1−>FBLN2
PRRX1−>CCDC80
DDR2−>PODN
PRRX1−>CILP
SFRP4−>PODN
PRRX1−>PODN
CREB3L1−>PODN
AEBP1−>PODN

project_id
vital_status
sample_group
gender gender

male
female

sample_group
Cancer Tumor
Normal Tissue
Cancer Metastatic

vital_status
Alive
Dead

project_id
TCGA−BRCA
TCGA−HNSC
TCGA−CESC

0

0.2

0.4

0.6

0.8

1

Figure 6.3: In-depth view of cluster 17, breast carcinoma. Top: A dimensionality reduction of
the samples, coloured according to multiple sources of meta-data. Bottom: The samples were
ordered linearly with SCORPIUS (see trajectory in Top) in order to visualise regulome activity in
the form of a heatmap.

of the samples in the dataset in order to build a single decision tree. The samples

are split into two groups, the ’in-bag’ data and the ’out-of-bag’ data (Figure 6.5A).

A decision tree [20] is trained on the in-bag expression of the potential regulators in

trying to predict the in-bag target gene expression (Figure 6.5B). The target expression

of the out-of-bag samples is predicted using the decision tree (Figure 6.5C), and the

squared error between the real and target expression is computed (Figure 6.5D). For

each sample in the out-of-bag set, this vector represents how well the decision tree

was able to predict the expression of the target gene.

The next few steps are repeated for every potential regulator Ri. Within the out-of-

Page 150 Papa Chris, I always enjoy talking to you, such as the countless
chess games that we played, and the late night discussions by my bedside.

6

bred: Inferring single cell regulatory networks.

Samples

Genes

Samples

Potential

regulators Target

T

R0

R1

R2

R3

R4

R5

A

B

Figure 6.4: A: Inferring a gene regulatory network from an omics dataset can be reduced to a
simpler problem. B: Given the expression of a target of interest and a set of potential regulators,
predict which regulators regulate the target gene.

bag samples, the expression of Ri is randomly shuffled. The target expression of

the out-of-bag samples is again calculated (Figure 6.5F), as well as the squared error

between the real target expression and the predicted expression is calculated (Fig-

ure 6.5G). The importance of regulator Ri for an out-of-bag sample Sj is defined as

the increase in squared error between the predicted target expression and the real

target expression, after perturbing the expression of Ri (Figure 6.5H).

Steps F-G are repeated for every potential regulator Ri. By aggregating all of the

feature importance scores over all the samples, regulators and targets, we obtain an

M-by-N-by-P tensor2.

A moderately-sized dataset could contain M = 10′000 samples, N = 2′000 regulators,

and P = 10′000 target genes. Due to memory constraints, only interactions with an

average importance value (across all samples) higher than a minimum threshold are

retained.

To compute the case-wise GRNs, we implemented the abovementioned methodol-

ogy in C++ in a modified version of the ranger R/C++ package [21].

6.4.2 Predicting the effect of an interaction

To predict the effect of a potential regulator Ri on a target gene T for a given tree,

the Pearson correlation is calculated between the difference in regulator expression

(before and after shuffling the values), and the difference in target expression predic-

tion.

2This is the origin of the name of the method, ”bred”.

You made me think for myself and have an opinion of my own.
At the right time, I will pass on the torch to Remi.

Page 151

bred: Inferring single cell regulatory networks.

6

In bag

Out of bag

Target
gene

Potential
regulators

Decision
tree model

B. Build
model

C. Predict

E. Perturb regulator i

(shuffle values)

Perturbed OOB

F. Also predict

D. Calculate

prediction error

G. Calculate

prediction error

with perturbed Ri

H. Calculate increase in

prediction error

after perturbing Ri

 =

How important

is Ri in predicting T?

A. Split data
in two groups

Figure 6.5: Calculating the feature importance score for one decision tree and one target
consists of 8 distinct steps. A: Randomly split the data into two groups, the in-bag data and
the out-of-bag data. B: The in-bag data is used to train a decision tree to try to predict the
expression of the target gene from the expression values of the regulators. C: The decision tree
is used to predict the gene expression of the target gene of the out-of-bag samples. D: Sample-
specific squared error values are computed. E: Repeat steps E-H for every regulator Ri. Perturb
the expression of regulator Ri in the out-of-bag samples. F: Again predict the gene expression
of the target gene with the perturbed expression values. G: Again compute the sample-specific
squared error values. H: The difference between the prediction error on the perturbed dataset
versus the prediction error on the unperturbed is the importance in Ri in predicting T

effect(Ri → T) = cor(x, y),

with x = expr_shuffled[:, Ri] − expr[:, Ri],

and y = predict(tree, expr_shuffled) − predict(tree, expr).

The Pearson correlation between two variables x and y is usually defined as shown in

Equation 6.1. Computing rxy for each (regulator, target) pairs, across all trees, would

require storing large amounts of data.

rxy =
∑n

i=1(xi − x̄) × (yi − ȳ)√∑n
i=1(xi − x̄)2 ×

√∑n
i=1(yi − ȳ)2

(6.1)

However, by rearranging the formula, it can be defined as Equation 6.2.

rxy =
∑

(xi × yi) −
∑

x ×
∑

y/n√
(
∑

x2
i − (

∑
x)2/n) ×

√
(
∑

y2
i − (

∑
y)2/n)

(6.2)

For every regulator Ri during a perturbation in a given tree, only 6 values need to

be stored, namely A =
∑

xi, B =
∑

yi, C = n, D =
∑

xi × yi, E =
∑

xi × xi, and

Page 152 Victor, you’re the most adventurous of us three brothers.
Maybe you don’t know yet what life will bring, and that’s okay. None of us do.

6

bred: Inferring single cell regulatory networks.

F =
∑

yi × yi.

For every (regulator, target) pair, these values are summed, and the rxy is calculated

as shown in Equation 6.3.

rxy = D − A × B/C√
(E − A2/C) ×

√
(F − B2/C)

(6.3)

The following cutoffs were used to determine the effect.

• Strong negative: rxy < −0.4

• Weak negative: −0.4 ≤ rxy < −0.2

• Unclear: −0.2 ≤ rxy ≤ 0.2

• Weak positive: 0.2 < rxy ≤ 0.4

• Strong positive: 0.4 < rxy

6.4.3 Clustering of case-wise GRNs

To perform downstream analysis on the cases, first a k-nearest neighbour (kNN) graph

of the cases is computed. In order for the kNN graph to better emphasise similari-

ties in GRNs rather than absolute euclidean distances, we first reduce the dimension-

ality of the case-by-interaction matrix to case-by-20 matrix using Landmark Multi-

Dimensional Scaling [22] with a Spearman rank distance metric.

Next, KD-trees are used to calculate the kNN graph efficiently. The cases in the

dataset are visualised and clustered using the Fruchterman-Reingold [15] and Louvain

clustering [16], respectively.

The following R packages provided implementations for each of these algorithms:

lmds, RANN, igraph [23].

6.4.4 Visualising clustered GRNs

After Louvain clustering, the interactions of the 50 interactions with highest mean im-

portance per cluster are retained. These interactions are visualised in Cytoscape [24],

in which nodes depict genes, edges depict predicted regulatory interactions, coloured

according to which cluster they are predicted for. The shape of the arrow denotes

the predicted effect of the regulatory interaction.

I enjoy driving other people absolutely nuts with our crazy talk.
Thanks for all the memes :)

Page 153

bred: Inferring single cell regulatory networks.

6
6.5 Supplementary information

Table 6.1: Prioritisation of genes, ranked according to page-rank value. The majority of these
genes are already known to be involved in oncogenesis (data not shown).

Cluster name Top 4 genes, page rank

Acute Leukemia HSPA1A, HSPA1B, HOXA10, HOXA9

ALL DDX3Y, XIST, RN7SL128P, TXLNGY

BL KIAA0226L, XIST, TCL1A, NUGGC

BRCA LINC00993, IRX5, ATP8A2P1, ENSG00000234918

Connective and Soft Tissue Disorder * HOXA11, HOXC9, HOXA10, HOXC10

CPTAC #1 SLC22A2, CUBN, XIST, UMOD

CPTAC #2 RN7SL752P, SCARNA13, XIST, RNY1

Diffuse Large B-Cell Lymphoma PLA2G2D, ENSG00000224137, CCL25, MS4A1

Digestive System Disorder MEP1A, LGALS4, MUC13, CDX1

Glioma NCAN, GPM6A, MBP, OLIG2

Kidney Carcinoma ACSM2A, SLC22A2, NAT8, UMOD

LIHC AGXT, ITIH3, ITIH1, HRG

LUAD SFTPA2, SFTPD, NAPSA, SFTA2

Melanocytic Neoplasm MLANA, RPS4Y1, PMEL, TYR

MM CD96, GPRC5D, FGFR3, IGLV1-41

Peripheral Nervous System Disorder TH, DBH, PENK, HAND2

PRAD TRGC1, NKX3-1, ACPP, RPL7P16

Squamous Cell Carcinoma TP63, SPRR2F, RPS4Y1, CDKN2B

THCA ENSG00000240237, TG, TPO, RPS4Y1

Transitional Cell Carcinoma DHRS2, UPK2, PADI3, VGLL1

UCEC DLX5, MSX1, HOXB5, HOXB8

Page 154 Hendrik, as the one who I always looked up to, I blame you for getting me interested
in computers. With you taking computers apart on the table, how could I resist.

6

bred: Inferring single cell regulatory networks.

F1 PPV TPR

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Bile Duct Adenocarcinoma
Bile Duct Carcinoma

Bile Duct Disorder
Bile Duct Neoplasm

Biliary System Disorder
Biliary Tract Carcinoma

Cholangiocarcinoma
Intrahepatic Cholangiocarcinoma

CHOL
male

Normal Tissue
Epithelial Neoplasm

Carcinoma
Adenocarcinoma

Glandular Cell Neoplasm
Digestive System Disorder

Digestive System Neoplasm
Malignant Digestive System Neoplasm

Digestive System Carcinoma
Hepatobiliary Disorder

Hepatobiliary Neoplasm
Liver and Intrahepatic Bile Duct Carcinoma

Liver and Intrahepatic Bile Duct Disorder
Liver and Intrahepatic Bile Duct Epithelial Neoplasm

Liver and Intrahepatic Bile Duct Neoplasm
Malignant Hepatobiliary Neoplasm
Primary Malignant Liver Neoplasm

Fibrolamellar Carcinoma
Hepatocellular Carcinoma

LIHC

value

group_type gender nci_ontology project_tag sample_group

Cluster 1, LIHC

F1 PPV TPR

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Mixed Mesodermal (Mullerian) Tumor
UCS

hispanic or latino
Female Reproductive System Disorder

Female Reproductive System Neoplasm
Neoplasm by Morphology

Disease or Disorder
Disease, Disorder or Finding

Neoplasm
Malignant Neoplasm

Neoplasm by Special Category
Epithelial Neoplasm

Carcinoma
Adenocarcinoma

Glandular Cell Neoplasm
not hispanic or latino

Alive
Dead

Cancer Tumor
female

Cystadenocarcinoma
Cystic Neoplasm

Serous Adenocarcinoma
Serous Cystadenocarcinoma

Serous Neoplasm
OV

General Qualifier
Property or Attribute

Qualifier
UCEC

value

group_type
ethnicity

gender

nci_ontology

project_tag

sample_group

vital_status

Cluster 2, UCEC

F1 PPV TPR

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Disease or Disorder
Disease, Disorder or Finding

Neoplasm
Neoplasm by Morphology

Neoplasm by Special Category
Malignant Neoplasm

Disorder by Site
Neoplasm by Site

male
Dead

Cancer Tumor
Hematologic and Lymphocytic Disorder

Hematopoietic and Lymphoid Cell Neoplasm
Hematopoietic and Lymphoid System Disorder

Hematopoietic and Lymphoid System Neoplasm
Lymphocytic Neoplasm

Lymphoproliferative Disorder
B−Cell Neoplasm

Mature B−Cell Neoplasm
B−Cell Non−Hodgkin Lymphoma

Lymphoma
Mature B−Cell Non−Hodgkin Lymphoma

Non−Hodgkin Lymphoma
General Qualifier

Property or Attribute
Qualifier

Non−Hodgkin Lymphoma by Clinical Course
Aggressive Non−Hodgkin Lymphoma

Burkitt Lymphoma
BL

value

group_type gender nci_ontology project_tag sample_group vital_status

Cluster 3, BL

Figure 6.6: Prioritisation of NCI terms and other forms of meta-data used to annotate clusters
1–3. Cluster 2 is mainly made up of disorders in female reproductive organs, and should have
been labelled as such.

I know you paid dearly for this, though, since you would continuously have to
repair the Windows Me installation that I just destroyed.

Page 155

bred: Inferring single cell regulatory networks.

6
F1 PPV TPR

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Neoplasm by Special Category
Malignant Neoplasm
not hispanic or latino

Disorder by Site
Neoplasm by Site

Cancer Tumor
Alive

Epithelial Neoplasm
Carcinoma

male
Adenocarcinoma

Glandular Cell Neoplasm
Genitourinary System Disorder

Genitourinary System Neoplasm
Malignant Genitourinary System Neoplasm

Invasive Carcinoma
Invasive Malignant Neoplasm

Reproductive System Disorder
Reproductive System Neoplasm

Malignant Reproductive System Neoplasm
Male Reproductive System Disorder

Male Reproductive System Neoplasm
Malignant Male Reproductive System Neoplasm

Prostate Adenocarcinoma
Invasive Prostate Carcinoma

Malignant Prostate Neoplasm
Prostate Carcinoma

Prostate Disorder
Prostate Neoplasm

PRAD

value

group_type
ethnicity

gender

nci_ontology

project_tag

sample_group

vital_status

Cluster 4, PRAD

F1 PPV TPR

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Disease or Disorder
Disease, Disorder or Finding

Neoplasm
Neoplasm by Morphology

Neoplasm by Special Category
Malignant Neoplasm

Disorder by Site
Neoplasm by Site

Unknown tumor status
Alive
male

Epithelial Neoplasm
Carcinoma

Adenocarcinoma
Glandular Cell Neoplasm

Normal Tissue
Genitourinary System Disorder

Genitourinary System Neoplasm
Malignant Genitourinary System Neoplasm

With tumor
Malignant Urinary System Neoplasm

Urinary System Disorder
Urinary System Neoplasm

Kidney and Ureter Neoplasm
Kidney Disorder

Kidney Neoplasm
Malignant Kidney Neoplasm

Kidney Carcinoma
Renal Cell Carcinoma

Tumor free
CPTAC

value

group_type
gender

last_known_disease_status

nci_ontology

project_tag

sample_group

vital_status

Cluster 5, CPTAC #1

F1 PPV TPR

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Malignant Peritoneal and Retroperitoneal Neoplasm
Malignant Retroperitoneal Neoplasm
Malignant Adrenal Gland Neoplasm

Malignant Nervous System Neoplasm
Malignant Peripheral Nervous System Neoplasm

Malignant Adrenal Medulla Neoplasm
Embryonal Neoplasm
Endocrine Neoplasm

Endocrine System Disorder
Nervous System Disorder

Nervous System Neoplasm
Neuroblastoma

Adrenal Gland Pheochromocytoma
Neuroblastic Tumor

Primitive Neuroectodermal Tumor
NB

Peritoneal and Retroperitoneal Disorder
Peritoneal and Retroperitoneal Neoplasm

Retroperitoneal Disorder
Retroperitoneal Neoplasm

Sympathetic Paraganglioma
Adrenal Gland Disorder

Adrenal Gland Neoplasm
Neuroendocrine Neoplasm

Autonomic Nervous System Neoplasm
Paraganglioma

PCPG
Adrenal Medulla Neoplasm

Peripheral Nervous System Disorder
Peripheral Nervous System Neoplasm

value

group_type nci_ontology project_tag

Cluster 6, Peripheral Nervous System Disorder

Figure 6.7: Prioritisation of NCI terms and other forms of meta-data used to annotate clusters
4–6. Cluster 5 is mainly made up of renal cell carcinoma, and should have been labelled as such.
Cluster 6 is aptly named, but mainly consists of neuroblastoma (NB), pheochromocytoma (PC),
and paraganglioma (PG) disorders.

Page 156 Ingeborg, Elke and Gallina, thank you for your hospitality and tasty food.
You are all amazing women

6

bred: Inferring single cell regulatory networks.

F1 PPV TPR

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Cancer Tumor
Mixed Neoplasm

Anaplastic Oligodendroglioma
Brain Oligodendroglioma

Low Grade Glioma
Oligodendroglioma

WHO Grade II Glioma
Anaplastic Astrocytoma

Mixed Glioma
GBM

Glioblastoma
Astrocytoma

Oligodendroglial Tumor
WHO Grade III Glioma

Malignant Nervous System Neoplasm
High Grade Astrocytic Tumor

Astrocytic Tumor
Anaplastic Malignant Neoplasm

Malignant Central Nervous System Neoplasm
Malignant Glioma

Nervous System Disorder
Nervous System Neoplasm

LLG
Neuroepithelial, Perineurial, and Schwann Cell Neoplasm

Neuroepithelial Neoplasm
Diffuse Glioma

Central Nervous System Disorder
Central Nervous System Neoplasm

Primary Central Nervous System Neoplasm
Glioma

value

group_type nci_ontology project_tag sample_group

Cluster 7, Glioma

F1 PPV TPR

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Neoplasm by Morphology
Neoplasm by Special Category

Alive
Malignant Neoplasm

Disorder by Site
Neoplasm by Site

male
Cancer Blood

hispanic or latino
Mixed Phenotype Acute Leukemia, B/Myeloid, Not Otherwise Specified
Mixed Phenotype Acute Leukemia, T/Myeloid, Not Otherwise Specified

B Acute Lymphoblastic Leukemia
B Lymphoblastic Leukemia/Lymphoma

Acute Lymphoblastic Leukemia
Lymphoid Leukemia

Acute Leukemia
Leukemia

Hematologic and Lymphocytic Disorder
Hematopoietic and Lymphoid Cell Neoplasm

Hematopoietic and Lymphoid System Disorder
Hematopoietic and Lymphoid System Neoplasm

Lymphocytic Neoplasm
Lymphoproliferative Disorder

Mixed Phenotype Acute Leukemia
Acute Leukemia of Ambiguous Lineage

Cancer BM
Precursor Lymphoid Neoplasm

T Lymphoblastic Leukemia/Lymphoma
T−Cell and NK−Cell Neoplasm

ALL

value

group_type
ethnicity

gender

nci_ontology

project_tag

sample_group

vital_status

Cluster 8, ALL

F1 PPV TPR

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Malignant Neoplasm
male

Nodular Melanoma
not hispanic or latino

Dead
Choroid Disorder

Choroid Melanoma
Choroid Neoplasm

Malignant Choroid Neoplasm
Spindle Cell Uveal Melanoma

Spindle Cell Melanoma
Mixed Epithelioid and Spindle Cell Melanoma

Eye Disorder
Eye Neoplasm

Malignant Eye Neoplasm
Malignant Uveal Neoplasm

Ocular Melanoma
Uveal Disorder

Uveal Melanoma
Uveal Neoplasm

UVM
Cancer Metastatic

Malignant Skin Neoplasm
Skin Disorder

Skin Neoplasm
Cutaneous Melanoma

Melanocytic Skin Neoplasm
SKCM

Melanocytic Neoplasm
Melanoma

value

group_type
ethnicity

gender

nci_ontology

project_tag

sample_group

vital_status

Cluster 9, Melanocytic Neoplasm

Figure 6.8: Prioritisation of NCI terms and other forms of meta-data used to annotate clusters
7–9.

for all I know, dealing with a Cannoodt,
requires a special kind of patience.

Page 157

bred: Inferring single cell regulatory networks.

6
F1 PPV TPR

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Lymphocytic Neoplasm
Lymphoproliferative Disorder

Disorder by Site
Neoplasm by Site
B−Cell Neoplasm

Acute Myeloid Leukemia with Myelodysplasia−Related Changes
Acute Myeloid Leukemia with Mutated NPM1

Dead
Acute Myeloid Leukemia with Gene Mutations

ALL
Precursor Lymphoid Neoplasm
Acute Lymphoblastic Leukemia

Lymphoid Leukemia
B Lymphoblastic Leukemia/Lymphoma

B Acute Lymphoblastic Leukemia
Cancer BM

Hematologic and Lymphocytic Disorder
Hematopoietic and Lymphoid Cell Neoplasm

Hematopoietic and Lymphoid System Disorder
Hematopoietic and Lymphoid System Neoplasm

Cancer Blood
Acute Myeloid Leukemia Not Otherwise Specified

Acute Myeloid Leukemia
Myeloid Leukemia

Bone Marrow Disorder
Bone Marrow Neoplasm

Malignant Bone Marrow Neoplasm
Myeloid Neoplasm

AML
Acute Leukemia

Leukemia

value

group_type nci_ontology project_tag sample_group vital_status

Cluster 10, Acute Leukemia

F1 PPV TPR

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Disorder by Site
Neoplasm by Site

Malignant Neoplasm
Squamous Cell Carcinoma
Squamous Cell Neoplasm

Dead
Lung Papillary Adenocarcinoma

Epithelial Neoplasm
Carcinoma

Adenocarcinoma
Glandular Cell Neoplasm

Lung Squamous Cell Carcinoma
LUSC

Normal Tissue
Respiratory and Thoracic Disorder

Thoracic Disorder
Thoracic Neoplasm

Malignant Thoracic Neoplasm
Lung Carcinoma

Lung Disorder
Lung Neoplasm

Malignant Lung Neoplasm
Malignant Respiratory Tract Neoplasm

Respiratory System Disorder
Respiratory Tract Neoplasm

Lung Adenocarcinoma
Lung Non−Small Cell Carcinoma
Non−Small Cell Adenocarcinoma

Non−Small Cell Carcinoma
LUAD

value

group_type nci_ontology project_tag sample_group vital_status

Cluster 11, LUAD

F1 PPV TPR

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Cancer Tumor
Disorder by Site

Neoplasm by Site
male

Normal Tissue
Epithelial Neoplasm

Carcinoma
Adenocarcinoma

Glandular Cell Neoplasm
Papillary Carcinoma

Papillary Epithelial Neoplasm
Papillary Neoplasm

Papillary Adenocarcinoma
Papillary Renal Cell Carcinoma

KIRP
Genitourinary System Disorder

Genitourinary System Neoplasm
Malignant Genitourinary System Neoplasm

Clear Cell Adenocarcinoma
Clear Cell Renal Cell Carcinoma

KIRC
Malignant Urinary System Neoplasm

Urinary System Disorder
Urinary System Neoplasm

Kidney and Ureter Neoplasm
Kidney Disorder

Kidney Neoplasm
Malignant Kidney Neoplasm

Kidney Carcinoma
Renal Cell Carcinoma

value

group_type gender nci_ontology project_tag sample_group

Cluster 12, Kidney Carcinoma

Figure 6.9: Prioritisation of NCI terms and other forms of meta-data used to annotate clusters
10–12. Cluster 11 contains mostly Lung Adenocarcinoma (LUAD), but also Lung Squamous Cell
Carcinoma (LUSC), and thus should have been labelled Lung Carcinoma instead.

Page 158 Go to the next chapter for more acknowledgements.

6

bred: Inferring single cell regulatory networks.

F1 PPV TPR

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Reproductive System Disorder
Reproductive System Neoplasm

Alive
female

Soft Tissue Sarcoma
Malignant Soft Tissue Neoplasm

Soft Tissue Disorder
Soft Tissue Neoplasm

Disorder by Site
Neoplasm by Site

male
Malignant Genitourinary System Neoplasm

Malignant Neoplasm
Dead

Disease or Disorder
Disease, Disorder or Finding

Neoplasm
Neoplasm by Special Category
Genitourinary System Disorder

Genitourinary System Neoplasm
Malignant Mixed Neoplasm

not hispanic or latino
Embryonal Neoplasm

Mixed Neoplasm
Cancer Tumor

SARC
Mesenchymal Cell Neoplasm

Sarcoma
Connective and Soft Tissue Disorder

Connective and Soft Tissue Neoplasm

value

group_type
ethnicity

gender

nci_ontology

project_tag

sample_group

vital_status

Cluster 13, Connective and Soft Tissue Disorder *

F1 PPV TPR

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Neoplasm by Special Category
male

Neoplasm by Morphology
Malignant Neoplasm

Disorder by Site
Neoplasm by Site

Alive
Cancer Tumor

Thymoma Type B
Malignant Thymus Neoplasm

Malignant Thymoma
Thymic Epithelial Neoplasm

THYM
Thymus Disorder

Thymus Neoplasm
Thymoma

Hematologic and Lymphocytic Disorder
Hematopoietic and Lymphoid Cell Neoplasm

Hematopoietic and Lymphoid System Disorder
Hematopoietic and Lymphoid System Neoplasm

Lymphocytic Neoplasm
Lymphoproliferative Disorder

B−Cell Neoplasm
Mature B−Cell Neoplasm

B−Cell Non−Hodgkin Lymphoma
Lymphoma

Mature B−Cell Non−Hodgkin Lymphoma
Non−Hodgkin Lymphoma

Diffuse Large B−Cell Lymphoma
DBCL

value

group_type gender nci_ontology project_tag sample_group vital_status

Cluster 14, Diffuse Large B−Cell Lymphoma

F1 PPV TPR

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Cervical Squamous Cell Carcinoma, Not Otherwise Specified
Cervical Squamous Neoplasm

Carcinoma
Respiratory and Thoracic Disorder

Thoracic Disorder
Thoracic Neoplasm

Malignant Thoracic Neoplasm
Lung Carcinoma

Lung Disorder
Lung Neoplasm

Malignant Lung Neoplasm
Malignant Respiratory Tract Neoplasm

Respiratory System Disorder
Respiratory Tract Neoplasm

Lip and Oral Cavity Carcinoma
Lip and Oral Cavity Squamous Cell Carcinoma

Malignant Oral Neoplasm
Oral Disorder

Oral Neoplasm
Lung Squamous Cell Carcinoma

LUSC
Otolaryngologic Disorder
Head and Neck Disorder

Head and Neck Neoplasm
Malignant Head and Neck Neoplasm

Head and Neck Carcinoma
Head and Neck Squamous Cell Carcinoma

HNSC
Squamous Cell Carcinoma
Squamous Cell Neoplasm

value

group_type nci_ontology project_tag

Cluster 15, Squamous Cell Carcinoma

Figure 6.10: Prioritisation of NCI terms and other forms of meta-data used to annotate clusters
13–15. Cluster 13 contains a mixture of cancer types, and should have been labelled ’Mixed’.

Page 159

bred: Inferring single cell regulatory networks.

6
F1 PPV TPR

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Papillary Carcinoma
Papillary Epithelial Neoplasm

Papillary Neoplasm
Papillary Adenocarcinoma

Endocrine Neoplasm
Endocrine System Disorder

Follicular Variant Thyroid Gland Papillary Carcinoma
Malignant Neck Neoplasm

Neck Disorder
Neck Neoplasm

Neck Carcinoma
Malignant Endocrine Neoplasm

Breast Disorder
Breast Neoplasm

Malignant Breast Neoplasm
Breast Carcinoma

Breast Adenocarcinoma
Thyroid Gland Papillary Carcinoma

Differentiated Thyroid Gland Carcinoma
Thyroid Gland Adenocarcinoma

Malignant Thyroid Gland Neoplasm
Thyroid Gland Disorder

Thyroid Gland Neoplasm
Thyroid Gland Carcinoma

Cystadenocarcinoma
Cystic Neoplasm

Mucinous Adenocarcinoma
Mucinous Neoplasm

Breast Mucinous Cystadenocarcinoma
Mucinous Cystadenocarcinoma

THCA

value

group_type nci_ontology project_tag

Cluster 16, THCA

F1 PPV TPR

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Disease or Disorder
Disease, Disorder or Finding

Neoplasm
Neoplasm by Morphology

Neoplasm by Special Category
Malignant Neoplasm
not hispanic or latino

Disorder by Site
Neoplasm by Site

Alive
Cancer Tumor

Epithelial Neoplasm
Carcinoma

female
Adenocarcinoma

Glandular Cell Neoplasm
Lobular Breast Carcinoma

Invasive Carcinoma
Invasive Malignant Neoplasm

Mixed Neoplasm
Malignant Mixed Neoplasm

Breast Adenocarcinoma
Invasive Ductal and Invasive Lobular Breast Carcinoma

Invasive Ductal and Lobular Carcinoma
Mixed Lobular and Ductal Breast Carcinoma

Breast Carcinoma
Malignant Breast Neoplasm

Breast Disorder
Breast Neoplasm

Invasive Mixed Breast Carcinoma
Invasive Breast Carcinoma

BRCA

value

group_type
ethnicity

gender

nci_ontology

project_tag

sample_group

vital_status

Cluster 17, BRCA

F1 PPV TPR

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Diffuse Large B−Cell Lymphoma
DBCL

Cancer Blood
Dead

hispanic or latino
female

Disease or Disorder
Disease, Disorder or Finding

Neoplasm
not hispanic or latino

Neoplasm by Morphology
Neoplasm by Special Category

Malignant Neoplasm
Alive
male

Disorder by Site
Neoplasm by Site

Hematologic and Lymphocytic Disorder
Hematopoietic and Lymphoid Cell Neoplasm

Hematopoietic and Lymphoid System Disorder
Hematopoietic and Lymphoid System Neoplasm

Lymphocytic Neoplasm
Lymphoproliferative Disorder

Cancer BM
B−Cell Neoplasm

Mature B−Cell Neoplasm
Unknown tumor status
Plasma Cell Myeloma

Plasma Cell Neoplasm
MM

value

group_type
ethnicity

gender

last_known_disease_status

nci_ontology

project_tag

sample_group

vital_status

Cluster 18, MM

Figure 6.11: Prioritisation of NCI terms and other forms of meta-data used to annotate clusters
16–18.

Page 160

6

bred: Inferring single cell regulatory networks.

F1 PPV TPR

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Neoplasm by Special Category
Dead

Malignant Neoplasm
CESC

not hispanic or latino
Cancer Tumor

Papillary Carcinoma
Papillary Epithelial Neoplasm

Papillary Neoplasm
Epithelial Neoplasm

Carcinoma
Breast Adenocarcinoma

Breast Disorder
Breast Neoplasm

Malignant Breast Neoplasm
Breast Carcinoma

Invasive Carcinoma
Invasive Malignant Neoplasm

Mixed Neoplasm
Malignant Mixed Neoplasm

BRCA
Invasive Mixed Breast Carcinoma

Invasive Breast Carcinoma
Invasive Ductal and Invasive Lobular Breast Carcinoma

Invasive Ductal and Lobular Carcinoma
Mixed Lobular and Ductal Breast Carcinoma

Papillary Transitional Cell Carcinoma
BLCA

Transitional Cell Carcinoma
Transitional Cell Neoplasm

value

group_type ethnicity nci_ontology project_tag sample_group vital_status

Cluster 19, Transitional Cell Carcinoma

F1 PPV TPR

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Malignant Exocrine Pancreas Neoplasm
Pancreatic Adenocarcinoma

Pancreatic Carcinoma
Pancreatic Exocrine Neoplasm

Carcinoma
Epithelial Neoplasm

Adenocarcinoma
Glandular Cell Neoplasm

Malignant Gastric Neoplasm
Gastric Carcinoma

Gastric Adenocarcinoma
STAD

Gastric Neoplasm
Stomach Disorder

Colon Adenocarcinoma
Colon Neoplasm

Malignant Colon Neoplasm
Colon Carcinoma

COAD
Colorectal Adenocarcinoma

Malignant Colorectal Neoplasm
Colorectal Carcinoma
Colorectal Neoplasm

Malignant Intestinal Neoplasm
Intestinal Disorder

Intestinal Neoplasm
Malignant Digestive System Neoplasm

Digestive System Carcinoma
Digestive System Disorder

Digestive System Neoplasm

value

group_type nci_ontology project_tag

Cluster 20, Digestive System Disorder

F1 PPV TPR

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Female Reproductive System Disorder
Female Reproductive System Neoplasm

Lung Carcinoma
Lung Disorder

Lung Neoplasm
Malignant Lung Neoplasm

Malignant Respiratory Tract Neoplasm
Respiratory System Disorder
Respiratory Tract Neoplasm

Malignant Female Reproductive System Neoplasm
Malignant Uterine Neoplasm

Uterine Disorder
Uterine Neoplasm

Lung Adenocarcinoma
Lung Non−Small Cell Carcinoma
Non−Small Cell Adenocarcinoma

Non−Small Cell Carcinoma
Malignant Uterine Corpus Neoplasm

Uterine Corpus Neoplasm
Endometrioid Tumor

Uterine Corpus Cancer
Endometrioid Adenocarcinoma

Endometrial Adenocarcinoma
Endometrial Carcinoma

Endometrial Disorder
Endometrial Endometrioid Adenocarcinoma

Endometrial Neoplasm
Malignant Endometrial Neoplasm

Type I Endometrial Adenocarcinoma
Tumor free

CPTAC

value

group_type last_known_disease_status nci_ontology project_tag

Cluster 21, CPTAC #2

Figure 6.12: Prioritisation of NCI terms and other forms of meta-data used to annotate clusters
19–21. Cluster 21 contains a mixture of cancer types, mostly lung carcinoma and endometrial
carcinoma.

Page 161

bred: Inferring single cell regulatory networks.

6
6.5.1 Melanocytic neoplasm

A

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●● ●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●● ●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●● ●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●● ●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

Group

●

●

TCGA−SKCM

TCGA−UVM

Group

●

●

●

Alive

Dead

Not Reported

Group

●

●

Cancer Metastatic

Cancer Tumor

Group

●

●

female

male

B

LZTS1−>PMEL
TFAP2A−>PMEL
TFAP2A−>MLANA
TFAP2A−>RAB38
ALX1−>RAB38
PAX3−>RAB38
MITF−>RAB38
ALX1−>MLANA
MITF−>MLANA
PAX3−>CABLES1
TFAP2A−>CABLES1
PKNOX2−>CABLES1
CAPN3−>CABLES1
ALX1−>CABLES1
GLMP−>CABLES1
GLMP−>RENBP
MITF−>RENBP
CAPN3−>KCNAB2
ELF3−>KCNAB2
GLMP−>GPR143
GLMP−>PMEL
GLMP−>MLANA
GLMP−>MITF
HOXB3−>HOXB2
KCNIP3−>MAL
SOX6−>MAL
MITF−>MAL
JUNB−>DUSP5
STAT5A−>CD44
ZBTB47−>FAM189A2
PKNOX2−>FAM189A2
CITED1−>FAM189A2
NFKBIA−>DDIT4
RUNX1−>TUBB4A
TFAP2A−>AGAP2−AS1
FZD4−>SLC7A5
EZH2−>HMGB2
PRKCI−>ITGA6
MACC1−>TSTD1
RPL23−>RPL41P5
UBA52−>RPL41P5
AHR−>ANXA1
ELF3−>DHRS3
SKIL−>TYRP1
PKNOX2−>TYRP1
ALX1−>TYRP1
PAX3−>TYRP1
GLMP−>TYRP1
CAPN3−>TYRP1
KCNIP3−>CRTAC1
PAX3−>CRTAC1
PKNOX2−>CRTAC1
TBX2−>CRTAC1
ELF3−>RASSF7
PCGF2−>SLC7A8
BAIAP2−>SLC7A8
TFAP2A−>SLC7A8
TFAP2C−>SLC7A8
TRIP6−>DMKN
KCNIP3−>GPRC5B
TFAP2A−>EFHD1
MEIS3−>EFHD1
ZBTB47−>HSPB7
RPS6KA4−>TOR4A
HOXD10−>HOXD9
ZNF358−>CDKN1C
ALX1−>ST3GAL4
CITED1−>TYRP1
ZBTB47−>CITED1
POU5F1−>CITED1
SOX8−>CITED1
PKNOX2−>CITED1
PAX3−>CITED1

TBX21−>CD8A
EOMES−>CD8A
EOMES−>CD8B
EOMES−>CD3E
EOMES−>IL2RB
IRF4−>PLA2G2D
MIXL1−>IGHGP
IRF4−>IGHV4−39
IRF4−>IGLV2−23
IRF4−>IGHV3−23
IRF4−>IGHV3−21
IRF4−>IGHV1−18
IRF4−>IGKV3−15
IRF4−>IGKV3−20
IRF4−>IGHG3
IRF4−>IGKC
IRF4−>IGHG1
IRF4−>IGHGP
IRF4−>IGLC2

PAX3−>PRAME
ALX1−>PRAME
MITF−>TYR
FOXD3−>TYR
DUSP4−>TYR
PRKD1−>AKT3
PAX3−>PLP1
FOXD3−>PLP1
GAS7−>PLP1
GAS7−>GPM6B
FOXD3−>GAS7
PAX3−>GAS7
ZEB2−>GAS7
FOXD3−>SERPINE2
GAS7−>SERPINE2
PAX3−>SERPINE2
ETV5−>SERPINE2
ZEB2−>S100B
ETV5−>S100B
PAX3−>S100B
GAS7−>S100B
FOXD3−>S100B
GAS7−>SRPX
ETV5−>MIA
GAS7−>MIA
PAX3−>MIA
DUSP4−>MIA
FOXD3−>MIA

project_id
vital_status
sample_group
gender gender

male
female
NA

sample_group
Cancer Tumor
Cancer Metastatic
NA

vital_status
Alive
Dead
Not Reported

project_id
TCGA−UVM
TCGA−SKCM
NA

0

0.2

0.4

0.6

0.8

1

Figure 6.13: In-depth view of cluster 9, melanocytic neoplasm. A: A dimensionality reduction of
the samples, coloured according to multiple sources of meta-data. B: The samples were ordered
linearly with SCORPIUS (see trajectory in A) in order to visualise regulome activity in the form
of a heatmap.

Page 162

6

bred: Inferring single cell regulatory networks.

6.5.2 Kidney carcinoma

A

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●●

●

●●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

● ●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●●
●

●

●
●

● ●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●●

●

●●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

● ●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●●
●

●

●
●

● ●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●●

●

●●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

● ●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●●
●

●

●
●

● ●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●●

●

●●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

● ●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●●
●

●

●
●

● ●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

Group

●

●

●

●

●

●

TARGET−RT

TARGET−WT

TCGA−KICH

TCGA−KIRC

TCGA−KIRP

TCGA−SARC

Group

●

●

Alive

Dead

Group

●

●

Cancer Tumor

Normal Tissue

Group

●

●

female

male

B

MAF−>ENPP3
ZNF395−>ENPP3
VEGFA−>ENPP3
GLIS1−>ENPP3
TRIM15−>ENPP3
PAX2−>ENPP3
POU3F3−>ENPP3
HNF1A−>ENPP3
TLR3−>ENPP3
PAX8−>ENPP3
NR1H4−>ENPP3
ANXA4−>ENPP3
CREB3L3−>ENPP3
HMOX1−>ENPP3
TLR3−>ESM1
NR1H4−>ESM1
VEGFA−>ESM1
POU3F3−>ESM1
PAX2−>ESM1
FZD4−>RGS5
ANXA4−>KCNE3
VEGFA−>FLT1
HEYL−>FLT1
TLR3−>GAL3ST1
ZNF395−>GAL3ST1
TLR3−>BARX2
TLR3−>ENPEP
TLR3−>SLC28A1
TLR3−>CA9
TLR3−>NDUFA4L2
TLR3−>ANGPTL4
ZNF395−>CA9
VEGFA−>CA9
TGFA−>CA9
ANXA4−>CA9
POU5F1−>CA9
TRIM15−>CA9
HNF1A−>CA9
LZTS1−>NDUFA4L2
FOXC2−>NDUFA4L2
EBF2−>NDUFA4L2
TGFA−>NDUFA4L2
EDN1−>EGLN3
POU3F3−>EGLN3
ZNF395−>EGLN3
VEGFA−>EGLN3
HOXD10−>EGLN3
TGFA−>EGLN3
TLR3−>EGLN3
ANXA4−>EGLN3
VEGFA−>NDRG1
ZNF395−>NDRG1
VEGFA−>SLC16A3
VEGFA−>SPAG4
ANXA4−>VEGFA
TLR3−>VEGFA
ZNF395−>VEGFA
ZNF395−>NDUFA4L2
VEGFA−>NDUFA4L2
VEGFA−>COL23A1
ZNF395−>COL23A1
TLR3−>COL23A1
ANXA4−>COL23A1
VEGFA−>HILPDA
TLR3−>HILPDA
TGFA−>ANGPTL4
VEGFA−>ANGPTL4
ZNF395−>ANGPTL4
SALL1−>ANGPTL4
NR1H4−>ANGPTL4
GPX3−>ANGPTL4

MITF−>SCIN
PAX8−>SCIN
PKHD1−>SCIN
EMX2−>SCIN
POU3F3−>SCIN
HNF1B−>SCIN
PAX2−>SCIN
SIM1−>SCIN
SOX6−>SCIN
HOXB8−>HOXB9
SIM1−>C14orf105
SIM1−>PAX2
PAX8−>MAL
PAX2−>MAL
EMX2−>MAL
POU3F3−>MAL
HNF1B−>TSPAN33
PAX8−>AIF1L
HNF1B−>AIF1L
HNF1B−>CYS1
PKHD1−>CYS1
HNF1B−>BICC1
SIM1−>BICC1
PKHD1−>BICC1
HNF1B−>SPP1
HNF1B−>GLDC

LHX1−>UMOD
SIM1−>UMOD
FOXI1−>UMOD
HNF1B−>UMOD
EMX1−>UMOD
ESRRB−>UMOD
PKHD1−>UMOD
TFAP2B−>UMOD
POU3F4−>UMOD
LHX1−>L1CAM
SIM1−>FXYD4
HOXD8−>FXYD4
ESRRB−>FXYD4
EMX2−>FXYD4
EMX1−>FXYD4
HNF1B−>FXYD4
NR0B2−>FXYD4
SIM1−>OGDHL
SIM1−>CYS1
SIM1−>DEFB1
SIM1−>MAL
SIM1−>FXYD2
SIM1−>TSPAN33

project_id
vital_status
sample_group
gender gender

male
female

sample_group
Cancer Tumor
Normal Tissue

vital_status
Alive
Dead

project_id
TCGA−KIRC
TCGA−KIRP
TCGA−KICH
TARGET−WT
TARGET−RT
TCGA−SARC

0

0.2

0.4

0.6

0.8

1

Figure 6.14: In-depth view of cluster 12, kidney carcinoma. A: A dimensionality reduction of
the samples, coloured according to multiple sources of meta-data. B: The samples were ordered
linearly with SCORPIUS (see trajectory in A) in order to visualise regulome activity in the form
of a heatmap.

Page 163

bred: Inferring single cell regulatory networks.

6
6.6 References

[1] Ziv Bar-Joseph, Anthony Gitter, and Itamar Simon. “Studying and Modelling

Dynamic Biological Processes Using Time-Series Gene Expression Data”. In:

Nat. Rev. Genet. 13.8 (Aug. 2012), pp. 552–564.

[2] Noa Novershtern et al. “Densely Interconnected Transcriptional Circuits Con-

trol Cell States in Human Hematopoiesis”. In: Cell 144.2 (2011), pp. 296–309.

[3] Gillian May et al. “Dynamic Analysis of Gene Expression and Genome-Wide

Transcription Factor Binding during Lineage Specification of Multipotent

Progenitors”. In: Cell Stem Cell 13.6 (2013), pp. 754–768.

[4] Vladimir Jojic et al. “Identification of Transcriptional Regulators in the Mouse

Immune System”. In: Nat. Immunol. 14.6 (2013), pp. 633–643. DOI: 10.1038/

ni.2587.Identification.

[5] Debbie K Goode et al. “Dynamic Gene Regulatory Networks Drive Hematopoi-

etic Specification and Differentiation”. In: Dev. Cell 36.5 (2016), pp. 572–587.

[6] Victoria Moignard et al. “Characterization of Transcriptional Networks in Blood

Stem and Progenitor Cells Using High-Throughput Single-Cell Gene Expres-

sion Analysis”. In: Nat. Cell Biol. 15.4 (Apr. 2013), pp. 363–372.

[7] Cristina Pina et al. “Single-Cell Network Analysis Identifies DDIT3 as a Nodal

Lineage Regulator in Hematopoiesis.”. In: Cell reports 11.10 (2015), pp. 1503–

1510. ISSN: 2211-1247. DOI: 10.1016/j.celrep.2015.05.016. pmid: 26051941.

[8] Balázs Papp and Stephen Oliver. “Genome-Wide Analysis of the Context-

Dependence of Regulatory Networks”. In: Genome Biology 6.2 (Jan. 27,

2005), p. 206. ISSN: 1474-760X. DOI: 10.1186/gb-2005-6-2-206.

[9] Marieke Lydia Kuijjer et al. “Estimating Sample-Specific Regulatory Networks”.

In: iScience 14 (Mar. 28, 2019), pp. 226–240. ISSN: 2589-0042. DOI: 10.1016/

j.isci.2019.03.021. pmid: 30981959.

[10] Xiaoping Liu et al. “Personalized Characterization of Diseases Using Sample-

Specific Networks”. In: Nucleic Acids Research 44.22 (2016), e164–e164. ISSN:

0305-1048. DOI: 10.1093/nar/gkw772. pmid: 27596597.

[11] Sara Aibar et al. “SCENIC: Single-Cell Regulatory Network Inference

and Clustering”. In: Nature Methods (Oct. 2017). ISSN: 1548-7091. DOI:

10.1038/nmeth.4463.

[12] Vân Anh Huynh-Thu et al. “Inferring Regulatory Networks from Expression

Data Using Tree-Based Methods”. In: PLoS ONE 5.9 (Jan. 2010), e12776. ISSN:

1932-6203. DOI: 10.1371/journal.pone.0012776. pmid: 20927193.

[13] Leo Breiman. “Random Forests”. In: Machine Learning 45 (2001), pp. 5–32.

Page 164

https://doi.org/10.1038/ni.2587.Identification
https://doi.org/10.1038/ni.2587.Identification
https://doi.org/10.1016/j.celrep.2015.05.016
26051941
https://doi.org/10.1186/gb-2005-6-2-206
https://doi.org/10.1016/j.isci.2019.03.021
https://doi.org/10.1016/j.isci.2019.03.021
30981959
https://doi.org/10.1093/nar/gkw772
27596597
https://doi.org/10.1038/nmeth.4463
https://doi.org/10.1371/journal.pone.0012776
20927193

6

bred: Inferring single cell regulatory networks.

[14] John N Weinstein et al. “The Cancer Genome Atlas Pan-Cancer Analysis

Project.”. In: Nature genetics 45.10 (Oct. 2013), pp. 1113–20. ISSN: 1546-1718.

DOI: 10.1038/ng.2764. pmid: 24071849.

[15] Thomas M. J. Fruchterman and Edward M. Reingold. “Graph Drawing by

Force-Directed Placement”. In: Software: Practice and Experience 21.11

(1991), pp. 1129–1164. ISSN: 1097-024X. DOI: 10.1002/spe.4380211102.

[16] Vincent D Blondel et al. “Fast Unfolding of Communities in Large Networks”.

In: Journal of Statistical Mechanics: Theory and Experiment 2008.10 (Oct. 9,

2008), P10008. ISSN: 1742-5468. DOI: 10.1088/1742-5468/2008/10/p10008.

[17] Nicholas Sioutos et al. “NCI Thesaurus: A Semantic Model Integrating Cancer-

Related Clinical and Molecular Information”. In: Journal of Biomedical Infor-

matics. Bio*Medical Informatics 40.1 (Feb. 1, 2007), pp. 30–43. ISSN: 1532-

0464. DOI: 10.1016/j.jbi.2006.02.013.

[18] Nicholas Schaum et al. “Single-Cell Transcriptomics of 20 Mouse Organs Cre-

ates a Tabula Muris”. In: Nature 562.7727 (Oct. 2018), pp. 367–372. ISSN: 1476-

4687. DOI: 10.1038/s41586-018-0590-4.

[19] Robrecht Cannoodt, Wouter Saelens, and Yvan Saeys. “Dyngen: Benchmark-

ing with in Silico Single Cells”. In: In preparation (Sept. 2019).

[20] L Breiman et al. Classification and Regression Trees. Wadsworth Publishing

Company, 1984.

[21] Marvin N Wright and Andreas Ziegler. “Ranger: A Fast Implementation of Ran-

dom Forests for High Dimensional Data in C++ and R”. In: Journal of Statistical

Software 77.1 (Mar. 2017). DOI: 10.18637/jss.v077.i01.

[22] Seunghak Lee and Seungjin Choi. “Landmark MDS Ensemble”. In: Pat-

tern Recognition 42.9 (Sept. 2009), pp. 2045–2053. ISSN: 00313203. DOI:

10.1016/j.patcog.2008.11.039.

[23] Gabor Csardi and Tamas Nepusz. “The Igraph Software Package for Complex

Network Research”. In: InterJournal, Complex Systems 1695.5 (2006), pp. 1–9.

[24] Paul Shannon et al. “Cytoscape: A Software Environment for IntegratedModels

of Biomolecular Interaction Networks”. In: Genome Research 13.11 (Nov. 1,

2003), pp. 2498–2504. DOI: 10.1101/gr.1239303.

Page 165

https://doi.org/10.1038/ng.2764
24071849
https://doi.org/10.1002/spe.4380211102
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1016/j.jbi.2006.02.013
https://doi.org/10.1038/s41586-018-0590-4
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.1016/j.patcog.2008.11.039
https://doi.org/10.1101/gr.1239303

7 | incgraph: Optimising regulatory net-

works

Abstract

Purpose: Graphlets are small network patterns that can be counted in or-

der to characterise the topology of a network. Counting graphlet can used

to iteratively optimise a network in order to achieve certain topological

properties. Hitherto graphlets were not suited as a metric for performing

topology optimisation due to the computational complexity of recalculat-

ing all the graphlet counts for each of the edge modifications.

Results: IncGraph calculates the differences in graphlet counts with re-

spect to the network in its previous state, thereby reducing execution time

by several orders of magnitude when compared to classic approaches. We

demonstrate the usefulness of this approach optimising gene regulatory

networks using a graphlet-based fitness score.

Conclusion: IncGraph is able to quickly quantify the topological impact

of small changes to a network, which opens novel research opportunities

to study changes in topologies in evolving networks, or develop graphlet-

based criteria for topology optimisation.

Publication status

Published in PLOS ONE 13, 4 (2018). doi:10.1371/journal.pone.0195997.

Cannoodt R, Ruyssinck J, Ramon J, De Preter K, and Saeys Y.

Author contributions

• R.C., Jo.R., Ja.R., and Y.S. designed the study.

• R.C., Jo.R., and Ja.R. performed the experiments and analysed the data.

• R.C. implemented the incgraph software package.

• R.C. wrote the original manuscript.

• R.C., Jo.R., Ja.R., K.D.P., and Y.S. reviewed and edited the manuscript.

• Jo.R., K.D.P. and Y.S. supervised the project.

Page 167

http://dx.doi.org/10.1371/journal.pone.0195997

incgraph: Optimising regulatory networks.

7
7.1 Introduction

Even the simplest of living organisms already consist of complex biochemical net-

works which must be able to respond to a variety of stressful conditions in order to

survive. An organism can be characterised using numerous interaction networks, in-

cluding gene regulation, metabolic, signalling, and protein-protein interaction. The

advent of high-throughput profiling methods (e.g. microarrays and RNA sequencing)

have allowed to observe the molecular contents of a cell, which in turn have enabled

computational network inference methods to reverse engineer the biochemical inter-

action networks [1]. Improving the accuracy of inferred networks has been a long-

standing challenge, but the development of ever more sophisticated algorithms and

community-wide benchmarking studies have resulted in significant process [2, 3, 4,

5].

Several recent developments involve incorporating topological priors, either to guide

the inference process [6] or post-process the network [7]. A common prior is that

biological networks are highly modular [8], as they consist of multiple collections of

functionally or physically linked molecules [9, 10]. At the lowest level, each module

is made up out of biochemical interactions arranged in small topological patterns,

which act as fundamental building blocks [11].

Graphlets [12] are one of the tools which could be used to add a topological prior

to a biological network. Graphlets are small connected subnetworks which can be

counted to identify which low-level topological patterns are present in a network.

By comparing how topologically similar a predicted network is to what would be ex-

pected of a true biological network, a predicted network can be optimised in order to

obtain a better topology.

By counting the number of occurrences of each of the different graphlets (Fig 7.1A)

touching a specific node, one can characterise the topology surrounding it. The

graphlet counts of a network can be represented as a matrix with one row for each

of the nodes and one column for each of the graphets (Fig 7.1B). An orbit represents

a class of isomorphic (i.e. resulting in the same structure) positions of nodes within a

graphlet (Fig 7.1A, coloured in red). Both graphlets and orbits have been used exten-

sively for predicting the properties of nodes such as protein functionality [13, 14, 15]

and gene oncogenicity [16], by performing network alignment [17, 18] or using them

as a similarity measure in machine learning tasks [19, 20].

In this work, we focus on optimising gene regulatory networks by incorporating a

topological prior as part of a topology optimisation process. We seek to optimise a

predicted network by iteratively modifying the network and accepting modifications

that lead to topological properties that resemble better those of true biological net-

Page 168 To Amor, a big thank you for contributing countless cuddles and endless drool.

7

incgraph: Optimising regulatory networks.

Figure 7.1: Graphlet counting in a network characterises its local topologies. (A) In total,
there are 30 different graphlets containing 2 to 5 nodes, ranging from G0 to G29. Orbits are
an extension of graphlets which also take into account the position of a node within a graphlet.
The 73 different orbits are coloured in red. (B) By counting the occurrences of these graphlets
in the network, the local topology surrounding a node can be quantified.

works.

However, using graphlets to perform topology optimisation was hitherto not possible.

Calculating the graphlet counts using themost state-of-the-art graphlet counting of a

moderately sized gene regulatory network already has an execution time of about five

seconds (E. coli, ∼ 3000 genes, ∼ 10000 interactions, up to graphlets up to 5 nodes).

While this computational time poses no issue for regular static networks, recalculating

all graphlet counts for every network modification made as part of a topology opti-

misation is computationally intractable. For example, performing 100’000 iterations

of topology optimisation on a similarly sized network and calculating the topological

impact of 10 possible edge modification at each iteration, already results in a com-

putational time of about 12 days. Graphlet-based topology optimisation thus quickly

becomes infeasible for larger networks.

When adding or removing an edge to a large network, the number of altered graphlets

is much smaller than the total number of graphlets in the network. It could therefore

be much more efficient to iterate over and count all the graphlets that have been

added or removed as a result of the edge modification, than it is to recalculate the

graphlet counts from scratch.

Eppstein et al. introduced data structures and algorithms for updating the counts of

size-three [21] and size-four [22] subgraphs in a dynamic setting. The data structures

were determined such that the amortised time is O(h) and O(h2), respectively, where

h is the h-index of the network [23].

I guesstimate at least 50% of the dissertation was written with you on my lap. Page 169

incgraph: Optimising regulatory networks.

7

We developed IncGraph, an alternative algorithm and implementation for performing

incremental counting of graphlets up to size five. We show empirically that IncGraph

is several orders ofmagnitude faster at calculating the differences in graphlet counts in

comparison to non-incremental counting approaches. In addition, we demonstrate

the practical applicability by developing a graphlet-based optimisation criterion for

biological networks.

7.2 Materials and methods

Assume a network G of which the graphlet counts CG are known. CG is an n-by-m

matrix, with n the number of vertices in the network, m = 73 is the number of different

orbits, and where CG[i, j] is the number of times node i is part of a graphlet at orbit Oj .

Further assume that one edge has either been added or removed from G, resulting in

G′, at which point the counts CG′ need to be observed. If multiple edges have been

modified, the method described below can be repeated for each edge individually.

7.2.1 Incremental graphlet counting

As stated earlier, recalculating the graphlet counts for each modification made to the

network quickly becomes computationally intractable for larger network sizes. How-

ever, as the differences in topology between G and G′ are small, it is instead possible

to calculate the differences in graphlet counts ∆G,G′ instead. This is much more ef-

ficient to calculate, as only the neighbourhood of the modified edges needs to be

explored. CG′ can thus be calculated as CG′ = CG + ∆G,G′ .

The differences in graphlet counts ∆G,G′ are calculated by iterating recursively over

the neighbours surrounding each of the modified edges (Fig 7.8). Several strategies

are used in order to calculate ∆G,G′ as efficiently as possible (Fig 7.2). (A) The delta

matrix is calculated separately for each modified edge. Since the edge already con-

tains two out of five nodes and any modified graphlet is a connected subgraph, the

neighbourhood of this edge only needs to be explored up to depth 3 in order to iter-

ate over all modified graphlets. (B) We propose a lookup table to look up the graphlet

index of each node of a given subgraph. By weighting each possible edge in a 5-node

graphlet, the sum of the edges of a subgraph can be used to easily look up the corre-

sponding graphlet index. (C) During the recursive iteration of the neighbourhood, the

same combination of nodes is never visited twice. (D) As the network can be relatively

large, the adjacency matrix is binary compressed in order to save memory. One inte-

ger requires 4 bytes and contains the adjacency boolean values of 32 edges, whereas

otherwise 32 booleans would require 32 bytes. For example, 1GB of memory is large

Page 170 Hello Petit Remi! You’re only seven months old,
but it feels like I’ve known you for much longer already.

7

incgraph: Optimising regulatory networks.

enough to store a compressed adjacency matrix of 92681 nodes. If the network con-

tains too many nodes to fit a compressed adjacency matrix into the memory, a list of

sets containing each node’s neighbours is used instead.

Figure 7.2: Several strategies are employed in order to reduce time and memory consump-
tion. (A) Only the depth 3 neighbourhood of each modified edge needs to be explored in order
to have visited all modified five-node graphlets. (B) A lookup table can be used to easily look
up the graphlet index of a subgraph, by weighing each edge in a 5-node subgraph by a power
of 2. (C) The same combination of five nodes is never repeated, as to avoid counting the same
graphlet multiple times. (D) The adjacency matrix of the network is compressed in order to
reduce memory usage.

IncGraph supports counting graphlets and orbits of subgraphs up to five nodes in

undirected networks. By modifying the lookup table, the method can be easily ex-

tended to directed graphlets or larger-node graphlets, or limited to only a selection

of graphlets. This allows for variations of the typical graphlets to be studied in an

incremental setting.

7.2.2 Timing experiments

Wecompared the execution time needed to calculate the graphlet counts in iteratively

modified networks between our method and a state-of-the-art non-incremental

algorithm, Orca [24]. Orca is a heavily optimised algorithm for counting 5-node

graphlets in static networks, and outperforms all other static graphlet counting

algorithms by an order of magnitude [24].

The timing experiments were performed by generating networks from 3 different net-

Your spontaneous happiness when you see me come downstairs
from a hard day of work immediately makes my day.

Page 171

incgraph: Optimising regulatory networks.

7

work models, making modifications to those networks while still adhering to the net-

work model, and measuring the execution times taken for both approaches to calcu-

late the new graphlet counts (Fig 7.3).

Step 0
Generate a network

with given parameters

nodes = 20
avg. degree = 2
model = Geometric

Step 1
Modify network while

adhering to parameters
Calculate ΔG,G'
with IncGraph

Step 3
Calculate CG' with

non-incremental approach

Repeat until 1 hour has elapsed
(max. 10000 repeats)

Step 2

TNITIG

Figure 7.3: Static network model generators were modified to generate dynamic networks.
Three network models were used: Barabási–Albert, Erdős–Rényi, and Geometric. Step 0: a
network is generated according to the network model and the given parameters. Step 1: the
network is modified such that the result is as likely to have been generated by the network model.
Step 2: The time for IncGraph to calculate the differences in graphlet counts is measured (TIG).
Step 3: The time for the non-incremental approach to calculate the graphlet counts of the new
network is measured (TNI). Steps 1 to 3 are repeated until all modifications generated at step
0 are processed, or until an execution time threshold has been reached.

The networkmodels were based on three static networkmodels: Barabási-Albert [25],

Erdős–Rényi [26], and Geometric [27]. These models were adapted to generate

evolving networks instead (Figs 7.9, 7.10, and 7.11). Each model generates an initial

network according to the static network model it is based on, and a list of network

modifications (removing an edge from or adding an edge to the network). These

network modifications are made such that at any given time point in the evolving

network, it is likely that the network at its current state could have been generated by

the original static network model.

Networks were generated with varying network models, between 1000 and 16000

nodes, node degrees between 2 and 64, and 10000 time points. We measured the

time needed to calculate the delta matrix at random time points until 1 hour has

passed. All timings experiments were carried out on Intel(R) Xeon(R) CPU E5-2665

@ 2.40GHz processors, with one thread per processor. The generation of networks

with higher node counts or degrees was constrained by the execution time of the

network generators, not by IncGraph. All data and scripts are made available at

github.com/rcannood/incgraph-scripts.

7.2.3 Gene regulatory network optimisation experiments

We demonstrate the usefulness of IncGraph by using a simple graphlet-based metric

to optimise gene regulatory networks. One of the striking differences between real

and predicted gene regulatory networks is that the predicted networks contain highly

Page 172 Dear Caro, I cannot imagine a better partner and mother than you.
You make me want to be the best version of myself.

https://github.com/rcannood/incgraph-scripts

7

incgraph: Optimising regulatory networks.

connected subnetworks, which contain high amounts of false positives. We deter-

mine a penalty score such that predicted networks containing graphlets with many

redundant edges will be penalised in comparison to very sparse networks.

The redundancy penalty (Fig 7.4A) of a network is defined as the sumof occurrences of

each graphlet multiplied by the redundancy associated with each individual graphlet.

The redundancy of a graphlet is the number of edges that can be removed without

disconnecting the nodes from one another. By using the redundancy penalty score,

we aim to improve the gene regulatory network (Fig 7.4B).

The topology optimisation procedure uses an empty network as initialisation and

grows the network by selecting interactions iteratively. Each iteration, the top k =
100 highest ranked interactions that are not currently part of the network are evalu-

ated, and the highest ranked interaction passing the redundancy criterion is selected

(Fig 7.4C). This procedure is repeated until a predefined amount of time has passed. As

the aim of this experiment is not to obtain the highest performing topology optimisa-

tion method, parameter optimisation of k has not been performed and is considered

to be outside the scope of this work.

We optimised gene regulatory networks of E. coli and S. cerevisiae. The predicted

networks were generated using the network inference method GENIE3 [28] with de-

fault parameters. Gene expression data was obtained from COLOMBOS [29] and

GEO [30], respectively. The predicted networks and the optimised versions thereof

were compared against respective lists of known gene regulatory interactions [31, 32].

7.3 Results and discussion

The contributions of this work are twofold. Firstly, we propose a newmethod for incre-

mentally calculating the differences in graphlet counts in changing graphs, and show

that it is orders of magnitude faster than non-incremental approaches. Secondly, we

demonstrate its applicability by optimising a predicted gene regulatory network in or-

der to reduce the false positive rate therein.

7.3.1 Execution time is reduced by orders of magnitude

Timing experiments show that IncGraph is significantly faster in calculating the delta

matrix in comparison to calculating the graphlet counts from scratch at each iteration

(Fig 7.5). The observed speedup ratios between IncGraph and the non-incremental

approachOrca ranges from about 50× to 10000×. The speedup ratio increases as the

network size increases. For larger networks, IncGraph can thus calculate the deltama-

Let’s get back on track collecting doorsteps,
and doing the things we love doing, just us three.

Page 173

incgraph: Optimising regulatory networks.

7

Figure 7.4: Predicted gene regulatory networks ofmodel organisms are optimised to reduce
the false positive rate. A) The number of redundant edges in each graphlet are counted. B)
The network is optimised in order to obtain a lower redundancy over time. Two networks are
shown, one before and one after the optimisation procedure. Edges coloured in red have been
removed from the network after optimisation, green edges have been added. C) Starting from an
empty network, the interactions are modified by iteratively evaluating the increase in redundancy
of the next k interactions, and adding the first edge for which its redundancy is less than the
90th percentile redundancy.

trices of 10000 edge modifications while the non-incremental approach calculates

one graphlet count matrix.

Surprisingly, IncGraph obtains higher execution times for networks with 5657 nodes

than for networks with 8000 nodes. One possible explanation is that the size of

the data structures containing those networks are particularly favourable in avoiding

cache misses. Confirmation of this explanation, however, would require further in-

vestigation.

Comparing the execution time of IncGraph to the h-index of the networks indicates

that the amortised time of IncGraph could be O(h3) (Fig 7.7). This is in line with the

amortised times O(h) and O(h2) of the algorithm described by Eppstein et al. [22] for

counting three-size and four-size subgraphs respectively.

Page 174

7

incgraph: Optimising regulatory networks.

Figure 7.5: IncGraph is significantly faster than non-incremental approaches. For small net-
works, the execution time of IncGraph TIG is already 50 times less than that of non-incremental
approaches TNI . This ratio increases even further for networks with higher numbers of nodes or
higher average degrees.

7.3.2 IncGraph allows for better regulatory network optimisation

We implemented a graphlet-based optimisation algorithm for improving the false pos-

itive rate of the predicted gene regulatory networks of E. coli and S. cerevisiae. After

reranking the regulatory interactions, the F1 score of the first 1000 interactions had

increased by 7.6% and 2.2% respectively (Fig 7.6A). The obtained speedup of about 15-

30× (Fig 7.6B) is in line with the experiments on in silico networks. Namely, for the E.

coli network at 9618 interactions and 889 nodes (average degree = 10.8), a speedup of

about 30× was obtained. Similarly, for the S. cerevisiae network at 8013 interactions

and 1254 nodes (average degree = 6.4), a speedup of about 15× was obtained. These

speedups are in the same order of magnitude of similarly sized networks (1000 nodes

and 8000 interactions) generated with a Barabási-Albert model, with a speedup of

65×. This is to be expected, as such networks share the same scale-free property

that gene regulatory networks have.

7.4 Conclusion

Many improvements over the past few years have resulted in efficient graphlet count-

ing algorithms, even for large static networks. However, needing to perform the sim-

plest of tasks tens of thousands of times quickly becomes computationally intractable.

As such, recalculating the graphlet counts of a network after each of the many net-

work modification is infeasible.

This study introduces a method for calculating the differences in graphlet (and orbit)

counts, which we call incremental graphlet counting or IncGraph for short. We show

that IncGraph is at least 10-100 times faster than non-incremental methods for net-

works of moderate size, and that the speedup ratio increases even further for larger

Page 175

incgraph: Optimising regulatory networks.

7

Figure 7.6: A simple graphlet-based scoring method improves predicted regulatory net-
works. (A) The F1 score was calculated by calculating the harmonic mean of the AUROC and
AUPR scores of the first 1000 interactions. (B) IncGraph is significantly faster than the non-
incremental approach. Note that for each interaction added to the network, the graphlet counts
of 100 putative interactions were evaluated.

networks. To demonstrate the applicability of IncGraph, we optimised a predicted

gene regulatory network by enumerating over the ranked edges and observing the

graphlet counts of several candidate edges before deciding which edge to add to the

network.

IncGraph enables graphlet-based metrics to characterize online networks, e.g. in

order to track certain network patterns over time, as a similarity measure in a machine

learning task, or as a criterion in a topology optimisation.

Page 176

7

incgraph: Optimising regulatory networks.

7.5 Supplemental information

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

● ●
●

●

●

●

● ●
●

●

●

●

● ●

●

●

●

●

● ●
●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

● ● ●

●

●

●

● ● ●

●

●

●

● ● ●

●

●

●

● ●

●
●

●

●

● ●
●

●

●

●

● ● ●

●

●

●

● ● ●

●

●

●

● ● ●

●

●

●

10−3

10−2

10−1

100

103 104 105 106 107

h−index³

In
cG

ra
ph

 ti
m

e
(s

)

model
●

●

●

BA
ER
GEO

Figure 7.7: Empirical measurements show a strong relation between the execution time of
IncGraph and the h-index cubed of the network it was applied to. This is in line with the
findings by Eppstein et al., where counting 3-size subgraphs has an amortised time of O(h) and
counting 4-size subgraphs has an amortised time of O(h2).

Page 177

incgraph: Optimising regulatory networks.

7

function CalculateDelta(Network G′, Node n0, Node n1)
▷ Assuming an edge (n0, n1) has just been added or removed from G′

∆− ← Matrix(NumNodes(G), 73) ▷ For storing the orbit counts of the removed graphlets
∆+ ← Matrix(NumNodes(G), 73) ▷ For storing the orbit counts of the added graphlets
B0 = {n0, n1} ▷ A blacklist of nodes not to visit anymore
e = (n0, n1) ▷ Different name for the edge
if e ∈ N ′ then

(m−, m+) = (0, 1) ▷ In other words, m− = 1 iff e ∈ N and m+ = 1 iff e ∈ N ′

else
(m−, m+) = (1, 0)

end if
x0 = 0
(∆+, ∆−) = CountOrbits(∆+, ∆−, (n0, n1), x0, m−, m+) ▷ Update delta matrices for

current nodes
for n2 ∈

∪
i∈{0,1} Neighbours(ni) do

if n2 ̸∈ B0 then
B0 = {n2}

∪
B0 ▷ Add n2 to blacklist B0

x1 = x0 + W(G′, (n0, n2), 1) + W(G′, (n1, n2), 2) ▷ Calculate edge weights for
current nodes

(∆+, ∆−) = CountOrbits(∆+, ∆−, (n0, n1, n2), x1, m−, m+)
B1 = B0 ▷ Make a copy for the next iteration depth
for n3 ∈

∪
i∈{0,1,2} Neighbours(ni) do

if n3 ̸∈ B1 then
B1 = {n3}

∪
B1

x2 = x1 + W(G′, (n0, n3), 3) + W(G′, (n1, n3), 4) + W(G′, (n2, n3), 5)
(∆+, ∆−) = CountOrbits(∆+, ∆−, (n0, n1, n2, n3), x2, m−, m+)
B2 = B1
for n4 ∈

∪
i∈{0,1,2,3} Neighbours(ni) do

if n4 ̸∈ B2 then
B2 = {n4}

∪
B2

x3 = x2 + Σi∈{0,1,2,3}W(G′, (ni, n4), i + 6)
(∆+, ∆−) = CountOrbits(∆+, ∆−, (n0, n1, n2, n3, n4), x3, m−, m+)

end if
end for

end if
end for

end if
end for

end function
function CountOrbits(∆+, ∆−, Nodes S, Edgeweights x, Modifier m−, Modifier m+)

L− = L[x + m−] ▷ Look up the orbits of the subgraph induced by S in N
∆−[S, L−] += 1 ▷ Increment orbit counts of nodes S at positions L− in ∆−

L+ = L[x + m+] ▷ Look up the orbits of the subgraph induced by S in N ′

∆+[S, L+] += 1 ▷ Increment orbit counts of nodes S at positions L+ in ∆+

return (∆−, ∆+)
end function
function W(Network G, Edge e, Exponent i)

return e ∈ Edges(G) ? 2i : 0 ▷ Return 2i if G contains edge e
end function

Figure 7.8: Pseudocode of IncGraph. IncGraph calculates ∆G,G′ using a strict branch-and-bound
strategy.

Page 178

7

incgraph: Optimising regulatory networks.

function BarabasiAlbert(number of nodes n, degree d,
number of operations o, offset exponent x = 1)

D ← Rep(0, n) ▷ All nodes start with 0 degree
T ← Rep({}, n) ▷ List of targets of each node
S ← Rep({}, n) ▷ List of sources of each node
O ← () ▷ Variable to store the generated operations in
procedure AddEdge(node i, node j, add as operation b)

D[i]← D[i] + 1; D[j]← D[j] + 1 ▷ Update degrees
T [i]← T [i] ∪ {j}; S[j]← S[j] ∪ {i} ▷ Update targets and sources
if b then

O ← O + (ADD, (i, j))
end if

end procedure
procedure RemoveEdge(node i, node j, add as operation b)

D[i]← D[i]− 1; D[j]← D[j]− 1 ▷ Update degrees
T [i]← T [i] \ {j}; S[j]← S[j] \ {i} ▷ Update targets and sources
if b then

O ← O + (REM, (i, j))
end if

end procedure
procedure AddNode(node i, add as operations b)

C ← {j | 0 ≤ j < i ∧ j ̸∈ S[i]} ▷ Select candidate neighbours
W ← (D[C] / ΣD[C])x ▷ Calculate weights for preferred attachment
X ← sample d neighbours from C with weights W
for j ∈ X do

AddEdge(i, j, b)
end for

end procedure
procedure RemoveNode(node i, add as operations b)

while |T [i]| > 0 do
j ← Head(T [i], 1)
RemoveEdge(i, j, b)

end while
end procedure
for i ∈ {1 .. m} do

for j ∈ {0 .. i− 1} do
AddEdge(i, j, false) ▷ Start with m + 1 complete graph

end for
end for
for i ∈ {m + 1 .. n− 1} do

AddNode(i, false) ▷ Add the rest of the nodes
end for
G0 ← {(i, j) | i ∈ {0 .. n− 1} ∧ j ∈ N [i]} ▷ Initial network
while |O| < o do ▷ Modify network until O is sufficiently large

i← Sample 1 index from {0 .. n− 1}
RemoveNode(i, true)
AddNode(i, true)

end while
O ← Head(O, o)
return (N0, O) ▷ Return the initial network and o operations

end function

Figure 7.9: Pseudo code for generating an evolving Barabási-Albert (BA) network. It first
generates a BA network, and then generates o operations such that at any time point, the
network is or very closely resembles a BA network.

Page 179

incgraph: Optimising regulatory networks.

7 function ErdosRenyi(number of nodes n, number of edges e, number of operations o)
P ← {(i, j) | i ∈ {1 .. n− 1} ∧ j ∈ {0 .. i− 1}} ▷ All possible interactions
N0 ← Sample e edges from P
Nc ← N0
while |O| < o do

ea ← Sample 1 edge from P \Nc

er ← Sample 1 edge from Nc

Nc ← (Nc \ er) ∪ {ea}
O ← O + ((ADD, ea), (REM, er))

end while
O ← Head(O, o)
return (N0, O) ▷ Return the initial geometric network and o operations

end function

Figure 7.10: Pseudo code for generating an evolving Erdős–Rényi (ER) network. It first
generates an ER network, and then generates o operations such that at any time point, the
network is or very closely resembles an ER network.

function Geometric(number of nodes n, number of edges e,
number of operations o, number of dimensions d = 3)

P ← Sample n points from a multivariate continuous uniform distribution Ud((0, 1)d)
D ← Calculate distance matrix from P
N0 ← Head(ArgSort(LowerTriangle(D)), e) ▷ Initial network
Np ← N0
O ← () ▷ Variable to store the generated operations in
while |O| < o do ▷ Modify network until O is sufficiently large

i← Sample 1 index from {0 .. n− 1}
P [i]← Sample 1 point from a Ud((0, 1)d) ▷ Give node i a new location
D[i,]← D[, i]← Calculate new distances between node i and all other nodes
Nc ← Head(ArgSort(LowerTriangle(D)), e) ▷ New network
Oa ← {(ADD, e) | e ̸∈ E(Np) ∧ e ∈ E(Nc)} ▷ Gather added edges
Or ← {(REM, e) | e ∈ E(Np) ∧ e ̸∈ E(Nc)} ▷ Gather removed edges
O ← O + Shuffle(Oa + Or) ▷ Append new operations to O
Np ← Nc

end while
O ← Head(O, o)
return (N0, O) ▷ Return the initial geometric network and o operations

end function

Figure 7.11: Pseudo code for generating an evolving geometric network. It first generates a
geometric network, and then generates o operations such that at any time point, the network is
or very closely resembles a geometric network.

Page 180

7

incgraph: Optimising regulatory networks.

7.6 References

[1] R. Albert. “Network Inference, Analysis, and Modeling in Systems Biology”. In:

the Plant Cell Online 19.11 (2007), pp. 3327–3338. issn: 1040-4651. doi: 10 .

1105/tpc.107.054700. pmid: 18055607.

[2] Daniel Marbach et al. “Revealing Strengths and Weaknesses of Methods for

Gene Network Inference”. In: Proceedings of the National Academy of Sci-

ences 107.14 (Apr. 2010), pp. 6286–6291. issn: 1091-6490. doi: 10.1073/pnas.

0913357107. pmid: 20308593.

[3] Varun Narendra et al. “A Comprehensive Assessment of Methods for De-Novo

Reverse-Engineering of Genome-Scale Regulatory Networks”. In: Genomics

97.1 (2011), pp. 7–18. issn: 08887543. doi: 10.1016/j.ygeno.2010.10.003. pmid:

20951196.

[4] DanielMarbach et al. “WisdomofCrowds for Robust GeneNetwork Inference”.

In: Nature methods 9.8 (July 2012), pp. 796–804. issn: 1548-7091. doi: 10 .

1038/nmeth.2016. pmid: 22796662.

[5] Tarmo Äijö and Richard Bonneau. “Biophysically Motivated Regulatory Net-

work Inference: Progress and Prospects”. In: Human Heredity 81.2 (2017),

pp. 62–77. issn: 14230062. doi: 10.1159/000446614. pmid: 28076866.

[6] Fabrício M. Lopes et al. “A Feature Selection Technique for Inference of Graphs

from Their Known Topological Properties: Revealing Scale-Free Gene Regula-

tory Networks”. In: Information Sciences 272 (2014), pp. 1–15. issn: 00200255.

doi: 10.1016/j.ins.2014.02.096.

[7] Joeri Ruyssinck et al. “Netter: Re-RankingGeneNetwork Inference Predictions

Using Structural Network Properties.”. In: BMCBioinformatics 17.1 (2016), p. 76.

issn: 1471-2105. doi: 10.1186/s12859-016-0913-0. pmid: 26862054.

[8] Alexander W Rives and Timothy Galitski. “Modular Organization of Cellular

Networks.”. In: Proceedings of the National Academy of Sciences of the United

States of America 100.3 (2003), pp. 1128–33. issn: 0027-8424. doi: 10.1073/

pnas.0237338100. pmid: 12538875.

[9] L H Hartwell et al. “From Molecular to Modular Cell Biology.”. In: Nature 402

(6761 Suppl 1999), pp. C47–C52. issn: 0028-0836. doi: 10 . 1038/35011540.

pmid: 10591225.

[10] a Barabasi et al. “Network Biology: Understanding the Cell’s Functional

Organization.”. In: Nature reviews. Genetics 5.2 (Feb. 2004), pp. 101–13. issn:

1471-0056. doi: 10.1038/nrg1272. pmid: 14735121.

[11] R Milo et al. “Network Motifs: Simple Building Blocks of Complex Networks.”.

In: Science (New York, N.Y.) 298.2002 (2002), pp. 824–827. issn: 00368075.

doi: 10.1126/science.298.5594.824. pmid: 12399590.

Page 181

https://doi.org/10.1105/tpc.107.054700
https://doi.org/10.1105/tpc.107.054700
18055607
https://doi.org/10.1073/pnas.0913357107
https://doi.org/10.1073/pnas.0913357107
20308593
https://doi.org/10.1016/j.ygeno.2010.10.003
20951196
https://doi.org/10.1038/nmeth.2016
https://doi.org/10.1038/nmeth.2016
22796662
https://doi.org/10.1159/000446614
28076866
https://doi.org/10.1016/j.ins.2014.02.096
https://doi.org/10.1186/s12859-016-0913-0
26862054
https://doi.org/10.1073/pnas.0237338100
https://doi.org/10.1073/pnas.0237338100
12538875
https://doi.org/10.1038/35011540
10591225
https://doi.org/10.1038/nrg1272
14735121
https://doi.org/10.1126/science.298.5594.824
12399590

incgraph: Optimising regulatory networks.

7

[12] N Przulj et al. “Modeling Interactome: Scale-Free or Geometric?”. In: Bioinfor-

matics (Oxford, England) 20.18 (Dec. 2004), pp. 3508–15. issn: 1367-4803. doi:

10.1093/bioinformatics/bth436. pmid: 15284103.

[13] Tijana Milenković and Nataša Pržulj. “Uncovering Biological Network Func-

tion via Graphlet Degree Signatures”. In: Cancer Informatics 6 (Jan. 1, 2008),

CIN.S680. issn: 1176-9351. doi: 10.4137/CIN.S680.

[14] Cortnie Guerrero et al. “Characterization of the Proteasome Interaction Net-

work Using a QTAX-Based Tag-Team Strategy and Protein Interaction Network

Analysis.”. In: Proceedings of the National Academy of Sciences of the United

States of America 105.36 (2008), pp. 13333–13338. issn: 0027-8424. doi: 10.

1073/pnas.0801870105. pmid: 18757749.

[15] Omkar Singh, Kunal Sawariya, and Polamarasetty Aparoy. “Graphlet Signature-

Based Scoring Method to Estimate Protein-Ligand Binding Affinity.”. In: Royal

Society open science 1.4 (2014), p. 140306. issn: 2054-5703. doi: 10.1098/rsos.

140306. pmid: 26064572.

[16] Tijana Milenković et al. “Optimal Network Alignment with Graphlet Degree

Vectors”. In: Cancer Informatics 9 (Jan. 1, 2010), CIN.S4744. issn: 1176-9351.

doi: 10.4137/CIN.S4744.

[17] Oleksii Kuchaiev et al. “Topological Network Alignment Uncovers Biological

Function and Phylogeny.”. In: Journal of the Royal Society, Interface / the

Royal Society 7.50 (2010), pp. 1341–1354. issn: 1742-5662. doi: 10.1098/rsif.

2010.0063. pmid: 20236959.

[18] Tijana Milenković, Han Zhao, and Fazle E. Faisal. “Global Network Alignment

in the Context of Aging”. In: Proceedings of the International Conference on

Bioinformatics, Computational Biology and Biomedical Informatics. BCB’13.

New York, NY, USA: ACM, 2013, 23:23–23:32. isbn: 978-1-4503-2434-2. doi:

10.1145/2506583.2508968.

[19] Nino Shervashidze et al. “Efficient Graphlet Kernels for Large Graph

Comparison”. In: Proceedings of the Twelth International Conference

on Artificial Intelligence and Statistics. Ed. by David van Dyk and Max Welling.

Vol. 5. Proceedings of Machine Learning Research. Hilton Clearwater Beach

Resort, Clearwater Beach, Florida USA: PMLR, Apr. 16–18, 2009, pp. 488–495.

url: http://proceedings.mlr.press/v5/shervashidze09a.html.

[20] Vladimir Vacic et al. “Graphlet Kernels for Prediction of Functional Residues in

Protein Structures.”. In: Journal of computational biology : a journal of com-

putational molecular cell biology 17.1 (2010), pp. 55–72. issn: 1557-8666. doi:

10.1089/cmb.2009.0029. pmid: 20078397.

[21] David Eppstein and Emma S. Spiro. “The H-Index of a Graph and Its Applica-

tion to Dynamic Subgraph Statistics”. In: Lecture Notes in Computer Science

(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes

Page 182

https://doi.org/10.1093/bioinformatics/bth436
15284103
https://doi.org/10.4137/CIN.S680
https://doi.org/10.1073/pnas.0801870105
https://doi.org/10.1073/pnas.0801870105
18757749
https://doi.org/10.1098/rsos.140306
https://doi.org/10.1098/rsos.140306
26064572
https://doi.org/10.4137/CIN.S4744
https://doi.org/10.1098/rsif.2010.0063
https://doi.org/10.1098/rsif.2010.0063
20236959
https://doi.org/10.1145/2506583.2508968
http://proceedings.mlr.press/v5/shervashidze09a.html
https://doi.org/10.1089/cmb.2009.0029
20078397

7

incgraph: Optimising regulatory networks.

in Bioinformatics). Vol. 5664 LNCS. Springer-Verlag, 2009, pp. 278–289. isbn:

3-642-03366-0. doi: 10.1007/978-3-642-03367-4_25.

[22] David Eppstein et al. “Extended Dynamic Subgraph Statistics Using H-Index

Parameterized Data Structures”. In: Theoretical Computer Science 447 (Aug.

2012), pp. 44–52. issn: 03043975. doi: 10.1016/j.tcs.2011.11.034.

[23] J E Hirsch. “An Index to Quantify an Individual’s Scientific Research Output”.

In: Proceedings of the National Academy of Sciences of the United States of

America 102.46 (Nov. 2005), pp. 16569–72. issn: 0027-8424. doi: 10 . 1073 /

pnas.0507655102. pmid: 16275915.

[24] Tomaž Hočevar and Janez Demšar. “A Combinatorial Approach to Graphlet

Counting.”. In: Bioinformatics (Oxford, England) 30.4 (Feb. 2014), pp. 559–65.

issn: 1367-4811. doi: 10.1093/bioinformatics/btt717. pmid: 24336411.

[25] Réka Albert and Albert Laszlo Barabasi. “Statistical Mechanics of Complex

Networks”. In: Reviews of Modern Physics 74 (January 2002), pp. 47–97. issn:

1478-3967. doi: 10.1088/1478-3967/1/3/006. pmid: 16204838.

[26] P. Erdős and A Rényi. “On Random Graphs”. In: Publicationes Mathematicae 6

(1959), pp. 290–297. issn: 00029947. doi: 10.2307/1999405. pmid: 1205592.

[27] M J B Appel and R P Russo. “The Minimum Vertex Degree of a Graph on Uni-

form Points in [0,1]d”. In: Adv. in Appl. Probab. 29.3 (1997), pp. 582–594. issn:

00018678.

[28] Vân Anh Huynh-Thu et al. “Inferring Regulatory Networks from Expression

Data Using Tree-Based Methods”. In: PLoS ONE 5.9 (Jan. 2010), e12776. issn:

1932-6203. doi: 10.1371/journal.pone.0012776. pmid: 20927193.

[29] Marco Moretto et al. “COLOMBOS v3.0: Leveraging Gene Expression Com-

pendia for Cross-Species Analyses”. In: Nucleic Acids Research 44.D1 (2016),

pp. D620–D623. issn: 13624962. doi: 10.1093/nar/gkv1251. pmid: 26586805.

[30] R. Edgar. “Gene ExpressionOmnibus: NCBI Gene Expression andHybridization

Array Data Repository”. In: Nucleic Acids Research 30.1 (2002), pp. 207–210.

issn: 13624962. doi: 10.1093/nar/30.1.207. pmid: 11752295.

[31] Socorro Gama-Castro et al. “RegulonDB Version 9.0: High-Level Integration

of Gene Regulation, Coexpression, Motif Clustering and Beyond”. In: Nucleic

Acids Research 44.D1 (2016), pp. D133–D143. issn: 13624962. doi: 10.1093/

nar/gkv1156. pmid: 26527724.

[32] Sisi Ma et al. “De-Novo Learning of Genome-Scale Regulatory Networks in

S. Cerevisiae”. In: PLoS ONE 9.9 (2014). issn: 19326203. doi: 10.1371/journal.

pone.0106479. pmid: 25215507.

Page 183

https://doi.org/10.1007/978-3-642-03367-4_25
https://doi.org/10.1016/j.tcs.2011.11.034
https://doi.org/10.1073/pnas.0507655102
https://doi.org/10.1073/pnas.0507655102
16275915
https://doi.org/10.1093/bioinformatics/btt717
24336411
https://doi.org/10.1088/1478-3967/1/3/006
16204838
https://doi.org/10.2307/1999405
1205592
https://doi.org/10.1371/journal.pone.0012776
20927193
https://doi.org/10.1093/nar/gkv1251
26586805
https://doi.org/10.1093/nar/30.1.207
11752295
https://doi.org/10.1093/nar/gkv1156
https://doi.org/10.1093/nar/gkv1156
26527724
https://doi.org/10.1371/journal.pone.0106479
https://doi.org/10.1371/journal.pone.0106479
25215507

8 | Essential guidelines for computational

method benchmarking

Abstract

Purpose: In computational biology and other sciences, researchers are

frequently faced with a choice between several computational methods

for performing data analyses. Benchmarking studies aim to rigorously

compare the performance of different methods using well-characterized

datasets, to determine the strengths of each method or to provide

recommendations regarding suitable choices of methods for an analysis.

However, benchmarking studies must be carefully designed and imple-

mented to provide accurate, unbiased, and informative results.

Results: Here, we summarise key guidelines and recommendations for

performing high-quality benchmarking analyses. Our review spans the

full pipeline of benchmarking, from defining the scope to best practices

for reproducibility. This includes crucial questions regarding design and

evaluation principles.

Conclusion: With this review, we aim to guide computational researchers

in avoiding common pitfalls in designing, performing, and interpreting

benchmarks.

Publication status

Published in Genome Biology 20 (2019). doi:10.1186/s13059-019-1738-8.

Weber LM, Saelens W, Cannoodt R, Soneson C, Hapfelmeier A, Gardner PP,

Boulesteix AL, Saeys Y, and Robinson MD

Author contributions

• L.M.W. proposed the project and drafted the manuscript.

• W.S., R.C., C.S., A.H., P.P.G., A.L.B., Y.S., and M.D.R. contributed ideas and

references and contributed to drafting of the manuscript.

• Y.S. and M.D.R. supervised the project.

Page 185

http://dx.doi.org/10.1186/s13059-019-1738-8

Essential guidelines for computational method benchmarking.

8
8.1 Introduction

Many fields of computational research are characterized by a growing number of avail-

able methods for data analysis. For example, at the time of writing, almost 400 meth-

ods are available for analysing data from single-cell RNA-sequencing experiments [1].

For experimental researchers and method users, this represents both an opportunity

and a challenge, since method choice can significantly affect conclusions.

Benchmarking studies are carried out by computational researchers to compare the

performance of different methods, using reference datasets and a range of evaluation

criteria. Benchmarks may be performed by authors of new methods to demonstrate

performance improvements or other advantages; by independent groups interested

in systematically comparing existingmethods; or organized as community challenges.

Neutral benchmarking studies, i.e., those performed independently of new method

development by authors without any perceived bias, and with a focus on the compar-

ison itself, are especially valuable for the research community [2, 3].

From our experience conducting benchmarking studies in computational biology, we

have learned several key lessons that we aim to synthesize in this review. A number

of previous reviews have addressed this topic from a range of perspectives, includ-

ing: overall commentaries and recommendations on benchmarking design [2, 4, 5,

6, 7, 8, 9]; surveys of design practices followed by existing benchmarks [7]; the im-

portance of neutral benchmarking studies [3]; principles for the design of real-data

benchmarking studies [10, 11] and simulation studies [12]; the incorporation of meta-

analysis techniques into benchmarking [13, 14, 15, 16]; the organization and role of

community challenges [17, 18]; and discussions on benchmarking design for specific

types of methods [19, 20]. More generally, benchmarking may be viewed as a form of

meta-research [21].

Our aim is to complement previous reviews by providing a summary of essential guide-

lines for designing, performing, and interpreting benchmarks. While all guidelines are

essential for a truly excellent benchmark, some are more fundamental than others.

Our target audience consists of computational researchers who are interested in per-

forming a benchmarking study, or who have already begun one. Our review spans

the full pipeline of benchmarking, from defining the scope to best practices for repro-

ducibility. This includes crucial questions regarding design and evaluation principles:

for example, using rankings according to evaluation metrics to identify a set of high-

performing methods, and then highlighting different strengths and trade-offs among

these.

Page 186

8

Essential guidelines for computational method benchmarking.

8.2 Ten essential guidelines

The review is structured as a series of guidelines (Figure 8.1), each explained in detail

in the following sections. We use examples from computational biology; however,

we expect that most arguments apply equally to other fields. We hope that these

guidelines will continue the discussion on benchmarking design, as well as assisting

computational researchers to design and implement rigorous, informative, and unbi-

ased benchmarking analyses.

1. Define the purpose and scope of the benchmark.
2. Include all relevant methods.
3. Select (or design) representative dataset.
4. Choose appropriate parameter values and software versions.
5. Evaluate methods according to key quantitative performance metrics.
6. Evaluate secondary measures including computational requirements,

user-friendliness, installation procedures, and documentation quality.
7. Interpret results and provide recommendations from both user and

method developer perspectives.
8. Publish results in an accessible format
9. Design the benchmark to enable future extensions.

10. Follow reproducible research best practices, by making code and data
publicly available.

Figure 8.1: Summary of the guidelines as a set of recommendations. Each recommendation is
discussed in more detail in the corresponding section in the text.

8.2.1 Defining the purpose and scope

The purpose and scope of a benchmark should be clearly defined at the beginning

of the study, and will fundamentally guide the design and implementation. In gen-

eral, we can define three broad types of benchmarking studies: (i) those by method

developers, to demonstrate the merits of their approach (e.g. [22, 23, 24, 25, 26]); (ii)

neutral studies performed to systematically compare methods for a certain analysis,

either conducted directly by an independent group (e.g. [27, 28, 29, 30, 31, 32, 33,

34, 35, 36, 37, 38]) or in collaboration with method authors (e.g. [39]); or (iii) those

organized in the form of a community challenge, such as those from the DREAM [40,

41, 42, 43, 44], FlowCAP [45, 46], CASP [47, 48], CAMI [49], Assemblathon [50, 51],

MAQC/SEQC [52, 53, 54], and GA4GH [55] consortia.

A neutral benchmark or community challenge should be as comprehensive as pos-

sible, although for any benchmark there will be trade-offs in terms of available re-

sources. To minimize perceived bias, a research group conducting a neutral bench-

Page 187

Essential guidelines for computational method benchmarking.

8

mark should be approximately equally familiar with all included methods, reflecting

typical usage of the methods by independent researchers [3]. Alternatively, the group

could include the original method authors, so that each method is evaluated under

optimal conditions; methods whose authors decline to take part should be reported.

In either case, bias due to focusing attention on particular methods should be avoided

– for example, when tuning parameters or fixing bugs. Strategies to avoid these types

of biases, such as the use of blinding, have been previously proposed [10].

By contrast, when introducing a new method, the focus of the benchmark will be on

evaluating the relative merits of the new method. This may be sufficiently achieved

with a less extensive benchmark, for example, by comparing against a smaller set of

state-of-the-art and baseline methods. However, the benchmark must still be care-

fully designed to avoid disadvantaging any methods; for example, extensively tuning

parameters for the new method while using default parameters for competing meth-

ods would result in a biased representation. Some advantages of a new method may

fall outside the scope of a benchmark; for example, a new method may enable more

flexible analyses than previous methods (e.g. beyond two-group comparisons in dif-

ferential analyses [22]).

Finally, results should be summarized in the context of the original purpose of the

benchmark. A neutral benchmark or community challenge should provide clear

guidelines for method users, and highlight weaknesses in current methods so that

these can be addressed by method developers. On the other hand, benchmarks

performed to introduce a new method should discuss what the new method offers

compared with the current state-of-the-art, such as discoveries that would otherwise

not be possible.

8.2.2 Selection of methods

The selection of methods to include in the benchmark will be guided by the purpose

and scope of the study. A neutral benchmark should include all available methods for

a certain type of analysis. In this case, the publication describing the benchmark will

also function as a review of the literature; a summary table describing the methods is

a key output (e.g. Figure 2 in [27] or Table 1 in [31]). Alternatively, it may make sense to

include only a subset of methods, by defining inclusion criteria: for example, all meth-

ods that (i) provide freely available software implementations, (ii) are available for com-

monly used operating systems, and (iii) can successfully be installed without errors

following a reasonable amount of trouble-shooting. Such criteria should be chosen

without favouring any methods, and exclusion of any widely used methods should

be justified. A useful strategy can be to involve method authors within the process,

since they may provide additional details on optimal usage. In addition, community

Page 188

8

Essential guidelines for computational method benchmarking.

involvement can lead to new collaborations and inspire future method development.

However, the overall neutrality and balance of the resulting research team should be

maintained. Finally, if the benchmark is organized as a community challenge, the se-

lection of methods will be determined by the participants. In this case, it is important

to communicate the initiative widely – for example, through an established network

such as DREAM challenges. However, some authors may choose not to participate; a

summary table documenting non-included methods should be provided in this case.

When developing a new method, it is generally sufficient to select a representative

subset of existing methods to compare against. For example, this could consist of

the current best-performing methods (if known), a simple baseline method, and any

methods that are widely used. The selection of competingmethods should ensure an

accurate and unbiased assessment of the relative merits of the new approach, com-

pared with the current state-of-the-art. In fast-moving fields, for a truly excellent

benchmark, method developers should be prepared to update their benchmarks or

design them to easily allow extensions as new methods emerge.

8.2.3 Selection (or design) of datasets

The selection of reference datasets is a critical design choice. If suitable publicly ac-

cessible datasets cannot be found, they will need to be generated or constructed,

either experimentally or by simulation. Including a variety of datasets ensures that

methods can be evaluated under a wide range of conditions. In general, reference

datasets can be grouped into two main categories: simulated (or synthetic) and real

(or experimental).

Simulated data have the advantage that a known true signal (or ground truth) can

easily be introduced; for example, whether a gene is differentially expressed. Quanti-

tative performance metrics measuring the ability to recover the known truth can then

be calculated. However, it is important to demonstrate that simulations accurately

reflect relevant properties of real data, by inspecting empirical summaries of both

simulated and real datasets (e.g. using automated tools [56]). The set of empirical

summaries to use is context-specific; for example, for single-cell RNA-sequencing,

drop-out profiles and dispersion-mean relationships should be compared [29]; for

DNA methylation, correlation patterns among neighbouring CpG sites should be in-

vestigated [57]; for comparing mapping algorithms, error profiles of the sequencing

platforms should be considered [58]. Simplified simulations can also be useful, to

evaluate a new method under a basic scenario, or to systematically test aspects such

as scalability and stability. However, overly simplistic simulations should be avoided,

since these will not provide useful information on performance. A further advantage

Page 189

Essential guidelines for computational method benchmarking.

8

of simulated data is that it is possible to generate as much data as required; for exam-

ple, to study variability and draw statistically valid conclusions.

Experimental data often do not contain a ground truth, making it difficult to calcu-

late performance metrics. Instead, methods may be evaluated by comparing them

against each other (e.g. overlap between sets of detected differential features [23]),

or against a current widely accepted method or gold standard (e.g. manual gating

to define cell populations in high-dimensional cytometry [31, 45], or fluorescence in

situ hybridization to validate absolute copy number predictions [6]). In the context of

supervised learning, the response variable to be predicted is known in the manually

labelled training and test data. However, individual datasets should not be overused,

and using the same dataset for both method development and evaluation should be

avoided, due to the risk of overfitting and overly optimistic results [59, 60]. In some

cases, it is also possible to design experimental datasets containing a ground truth.

Examples include: (i) spiking in synthetic RNAmolecules at known relative concentra-

tions [61] in RNA-sequencing experiments (e.g. [54, 62]), (ii) large-scale validation of

gene expression measurements by quantitative polymerase chain reaction (e.g. [54]),

(iii) using genes located on sex chromosomes as a proxy for silencing of DNA methy-

lation status (e.g. [26, 63]), (iv) using fluorescence-activated cell sorting to sort cells

into known sub-populations prior to single-cell RNA-sequencing (e.g. [29, 64, 65]),

or (v) mixing different cell lines to create pseudo-cells [66]. However, it may be diffi-

cult to ensure that the ground truth represents an appropriate level of variability – for

example, the variability of spiked-in material, or whether method performance on cell

line data is relevant to out-bred populations. Alternatively, experimental datasets may

be evaluated qualitatively, for example, by judging whether each method can recover

previous discoveries, although this strategy relies on the validity of previous results.

A further technique is to design semi-simulated datasets that combine real experimen-

tal datawith an in silico (i.e., computational) spike-in signal; for example, by combining

cells or genes from null (e.g. healthy) samples with a subset of cells or genes from

samples expected to contain a true differential signal (examples include [22, 67, 68]).

This strategy can create datasets withmore realistic levels of variability and correlation,

together with a ground truth.

Overall, there is no perfect reference dataset, and the selection of appropriate datasets

will involve trade-offs, for example, regarding the level of complexity. Both simu-

lated and experimental data should not be too simple (e.g. two of the datasets in the

FlowCAP-II challenge [45] gave perfect performance for several algorithms) or too dif-

ficult (e.g. for the third dataset in FlowCAP-II, no algorithms performed well); in these

situations, it can be impossible to distinguish performance. In some cases, individual

datasets have also been found to be unrepresentative, leading to over-optimistic or

Page 190

8

Essential guidelines for computational method benchmarking.

otherwise biased assessment of methods (e.g. [69]). Overall, the key to truly excellent

benchmarking is diversity of evaluations, i.e., using a range ofmetrics and datasets that

span the range of those that might be encountered in practice, so that performance

estimates can be credibly extrapolated.

8.2.4 Parameters and software versions

Parameter settings can have a crucial impact on performance. Some methods have

a large number of parameters, and tuning parameters to optimal values can require

significant effort and expertise. For a neutral benchmark, a range of parameter values

should ideally be considered for eachmethod, although trade-offs need to be consid-

ered regarding available time and computational resources. Importantly, the selection

of parameter values should comply with the neutrality principle, i.e., certain methods

should not be favoured over others through more extensive parameter tuning.

There are three major strategies for choosing parameters. The first (and simplest) is to

use default values for all parameters. Default parameters may be adequate for many

methods, although this is difficult to judge in advance. While this strategy may be

viewed as too simplistic for some neutral benchmarks, it reflects typical usage. We

used default parameters in several neutral benchmarks where we were interested in

performance for untrained users [27, 70, 71]. In addition, for [27], due to the large

number of methods and datasets, total runtime was already around a week using

192 processor cores, necessitating judgement in the scope of parameter tuning. The

second strategy is to choose parameters based on previous experience or published

values. This relies on familiarity with the methods and the literature, reflecting usage

by expert users. The third strategy is to use a systematic or automated parameter

tuning procedure – for example, a grid search across ranges of values for multiple

parameters or techniques such as cross-validation (e.g. [30]). The strategies may also

be combined, for example, by setting non-critical parameters to default values and

performing a grid search for key parameters. Regardless, neutrality should be main-

tained: comparing methods with the same strategy makes sense, while comparing

one method with default parameters against another with extensive tuning makes for

an unfair comparison.

For benchmarks performed to introduce a new method, comparing against a single

set of optimal parameter values for competing methods is often sufficient; these val-

ues may be selected during initial exploratory work or by consulting documentation.

However, as outlined above, bias may be introduced by tuning the parameters of the

new method more extensively. The parameter selection strategy should be trans-

parently discussed during the interpretation of the results, to avoid the risk of over-

optimistic reporting due to expending more researcher degrees of freedom on the

Page 191

Essential guidelines for computational method benchmarking.

8

new method [5, 72].

Software versions can also influence results, especially if updates include major

changes to methodology (e.g. [73]). Final results should generally be based on the

latest available versions, which may require re-running some methods if updates

become available during the course of a benchmark.

8.2.5 Evaluation criteria: key quantitative performance metrics

Evaluation of methods will rely on one or more quantitative performancemetrics (Fig-

ure 8.2A). The choice ofmetric depends on the type ofmethod and data. For example,

for classification tasks with a ground truth, metrics include the true positive rate (TPR;

sensitivity or recall), false positive rate (FPR; 1 - specificity), and false discovery rate

(FDR). For clustering tasks, common metrics include the F1 score, adjusted Rand in-

dex, normalizedmutual information, precision, and recall; someof these can be calcu-

lated at the cluster level as well as averaged (and optionally weighted) across clusters

(e.g. these metrics were used to evaluate clustering methods in our own work [28, 31]

and by others [33, 45, 74]). Several of these metrics can also be compared visually to

capture the trade-off between sensitivity and specificity, for example, using receiver

operating characteristic (ROC) curves (TPR versus FPR), TPR versus FDR curves, or

precision-recall (PR) curves (Figure 8.2B). For imbalanced datasets, PR curves have

been shown to be more informative than ROC curves [75, 76]. These visual metrics

can also be summarized as a single number, such as area under the ROC or PR curve;

examples from our work include [22, 29]. In addition to the trade-off between sen-

sitivity and specificity, a methods operating point’ is important; in particular, whether

the threshold used (e.g. 5% FDR) is calibrated to achieve the specified error rate. We

often overlay this onto TPR-FDR curves by filled or open circles (e.g. Figure 8.2B, gen-

erated using the iCOBRA package [77]); examples from our work include [22, 23, 25,

78].

For methods with continuous-valued output (e.g. effect sizes or abundance esti-

mates), metrics include the root mean square error, distance measures, Pearson cor-

relation, sum of absolute log-ratios, log-modulus, and cross-entropy. As above, the

choice of metric depends on the type of method and data (e.g. [41, 79] used correla-

tion, while [48] used root mean square deviation). Further classes of methods include

those generating graphs, phylogenetic trees, overlapping clusters, or distributions;

these require more complex metrics. In some cases, custom metrics may need to be

developed (e.g. we defined new metrics for topologies of developmental trajectories

in [27]). When designing custommetrics, it is important to assess their reliability across

a range of prediction values (e.g. [80, 81]). For some metrics, it may also be useful to

assess uncertainty, for example, via confidence intervals. In the context of supervised

Page 192

8

Essential guidelines for computational method benchmarking.

Figure 8.2: Summary and examples of performance metrics. A: Schematic overview of classes of
frequently used performance metrics, including examples (boxes outlined in gray). B: Examples
of popular visualizations of quantitative performance metrics for classification methods, using
reference datasets with a ground truth. ROC curves (left). TPR versus FDR curves (centre);
circles represent observed TPR and FDR at typical FDR thresholds of 1, 5, and 10%, with filled
circles indicating observed FDR lower than or equal to the imposed threshold. PR curves (right).
Visualizations were generated using iCOBRA R/Bioconductor package [77]. FDR false discovery
rate, FPR false positive rate, PR precision-recall, ROC receiver operating characteristic, TPR
true positive rate

learning, classification or prediction accuracy can be evaluated by cross-validation,

bootstrapping, or on a separate test dataset (e.g. [13, 46]). In this case, procedures to

split data into training and test sets should be appropriate for the data structure and

the prediction task at hand (e.g. leaving out whole samples or chromosomes [82]).

Additional metrics that do not rely on a ground truth include measures of stability,

stochasticity, and robustness. These measures may be quantified by running meth-

ods multiple times using different inputs or sub-sampled data (e.g. we observed sub-

stantial variability in performance for some methods in [29, 31]). Missing values may

occur if a method does not return any values for a certain metric, for example, due

to a failure to converge or other computational issues such as excessive runtime or

memory requirements (e.g. [27, 29, 31]). Fall-back solutions such as imputation may

Page 193

Essential guidelines for computational method benchmarking.

8

be considered in this case [83], although these should be transparently reported. For

non-deterministic methods (e.g. with random starts or stochastic optimization), vari-

ability in performancewhen using different random seeds or sub-sampled data should

be characterized. Null comparisons can be constructed by randomizing group labels

such that datasets do not contain any true signal, which can provide information on

error rates (e.g. [22, 25, 26]). However, these must be designed carefully to avoid con-

founding by batch or population structure, and to avoid strong within-group batch

effects that are not accounted for.

For most benchmarks, multiple metrics will be relevant. Focusing on a single met-

ric can give an incomplete view: methods may not be directly comparable if they

are designed for different tasks, and different users may be interested in different as-

pects of performance. Therefore, a crucial design decision is whether to focus on

an overall ranking, for example, by combining or weighting multiple metrics. In gen-

eral, it is unlikely that a single method will perform best across all metrics, and perfor-

mance differences between top-ranked methods for individual metrics can be small.

Therefore, a good strategy is to use rankings from multiple metrics to identify a set of

consistently high-performing methods, and then highlight the different strengths of

these methods. For example, in [31], we identified methods that gave good clustering

performance, and then highlighted differences in run-times among these. In several

studies, we have presented results in the form of a graphical summary of performance

according to multiple criteria (examples include Figure 3 in [27] and Figure 5 in [29]

from our work; and Figure 2 in [39] and Figure 6 in [32] from other authors). Identify-

ing methods that consistently under-perform can also be useful, to allow readers to

avoid these.

8.2.6 Evaluation criteria: secondary measures

In addition to the key quantitative performancemetrics, methods should also be evalu-

ated according to secondary measures, including runtime, scalability, and other com-

putational requirements, as well as qualitative aspects such as user-friendliness, instal-

lation procedures, code quality, and documentation quality (Figure 8.2A). From the

user perspective, the final choice ofmethodmay involve trade-offs according to these

measures: an adequately performing method may be preferable to a top-performing

method that is especially difficult to use.

In our experience, run-times and scalability can vary enormously between methods

(e.g. in our work, run-times for cytometry clustering algorithms [31] and meta-

genome analysis tools [79] ranged across multiple orders of magnitude for the

same datasets). Similarly, memory and other computational requirements can vary

widely. Run-times and scalability may be investigated systematically, for example, by

Page 194

8

Essential guidelines for computational method benchmarking.

varying the number of cells or genes in a single-cell RNA-sequencing dataset [28,

29]. In many cases, there is a trade-off between performance and computational

requirements. In practice, if computational requirements for a top-performing

method are prohibitive, then a different method may be preferred by some users.

User-friendliness, installation procedures, and documentation quality can also be

highly variable [84, 85]. Streamlined installation procedures can be ensured by

distributing the method via standard package repositories, such as CRAN and Biocon-

ductor for R, or PyPI for Python. Alternative options include GitHub and other code

repositories or institutional websites; however, these options do not provide users

with the same guarantees regarding reliability and documentation quality. Availability

across multiple operating systems and within popular programming languages for

data analysis is also important. Availability of graphical user interfaces can further

extend accessibility, although graphical-only methods hinder reproducibility and are

thus difficult to include in a systematic benchmark.

For many users, freely available and open source software will be preferred, since it is

more broadly accessible and can be adapted by experienced users. From the devel-

oper perspective, code quality and use of software development best practices, such

as unit testing and continuous integration, are also important. Similarly, adherence

to commonly used data formats (e.g. GFF/GTF files for genomic features, BAM/SAM

files for sequence alignment data, or FCS files for flow or mass cytometry data) greatly

improves accessibility and extensibility.

High-quality documentation is critical, including help pages and tutorials. Ideally, all

code examples in the documentation should be continually tested, for example, as

Bioconductor does, or through continuous integration.

8.2.7 Interpretation, guidelines, and recommendations

For a truly excellent benchmark, results must be clearly interpreted from the perspec-

tive of the intended audience. For method users, results should be summarized in the

form of recommendations. An overall ranking of methods (or separate rankings for

multiple evaluation criteria) can provide a useful overview. However, as mentioned

above, some methods may not be directly comparable (e.g. since they are designed

for different tasks), and different users may be interested in different aspects of perfor-

mance. In addition, it is unlikely that there will be a clear winner across all criteria, and

performance differences between top-ranked methods can be small. Therefore, an

informative strategy is to use the rankings to identify a set of high-performing meth-

ods, and to highlight the different strengths and trade-offs among these methods.

The interpretationmay also involve biological or other domain knowledge to establish

Page 195

Essential guidelines for computational method benchmarking.

8

the scientific relevance of differences in performance. Importantly, neutrality princi-

ples should be preserved during the interpretation.

Formethod developers, the conclusionsmay include guidelines for possible future de-

velopment ofmethods. By assistingmethod developers to focus their research efforts,

high-quality benchmarks can have significant impact on the progress of methodolog-

ical research.

Limitations of the benchmark should be transparently discussed. For example, in [27]

we used default parameters for all methods, while in [31] our datasets relied on man-

ually gated reference cell populations as the ground truth. Without a thorough dis-

cussion of limitations, a benchmark runs the risk of misleading readers; in extreme

cases, this may even harm the broader research field by guiding research efforts in

the wrong directions.

8.2.8 Publication and reporting of results

The publication and reporting strategy should emphasize clarity and accessibility. Vi-

sualizations summarizing multiple performance metrics can be highly informative for

method users (examples include Figure 3 in [27] and Figure 5 in [29] from our own

work; as well as Figure 6 in [32]). Summary tables are also useful as a reference (e.g.

[31, 45]). Additional visualizations, such as flow charts to guide the choice of method

for different analyses, are a helpful way to engage the reader (e.g. Figure 5 in [27]).

For extensive benchmarks, online resources enable readers to interactively explore

the results (examples fromour work include [27, 31], which allow users to filter metrics

and datasets). Figure 3 displays an example of an interactive website from one of

our benchmarks [27], which facilitates exploration of results and assists users with

choosing a suitable method. While trade-offs should be considered in terms of the

amount of work required, these efforts are likely to have significant benefit for the

community.

In most cases, results will be published in a peer-reviewed article. For a neutral bench-

mark, the benchmark will be the main focus of the paper. For a benchmark to intro-

duce a new method, the results will form one part of the exposition. We highly rec-

ommend publishing a preprint prior to peer review (e.g. on bioRxiv or arXiv) to speed

up distribution of results, broaden accessibility, and solicit additional feedback. In par-

ticular, direct consultation with method authors can generate highly useful feedback

(examples from our work are described in the acknowledgements in [79, 86]). Finally,

at publication time, considering open access options will further broaden accessibil-

ity.

Page 196

8

Essential guidelines for computational method benchmarking.

Figure 8.3: Example of an interactive website allowing users to explore the results of one of
our benchmarking studies [27]. This website was created using the Shiny framework in R.

8.2.9 Enabling future extensions

Since new methods are continually emerging [1], benchmarks can quickly become

out of date. To avoid this, a truly excellent benchmark should be extensible. For ex-

ample, creating public repositories containing code and data allows other researchers

to build on the results to include new methods or datasets, or to try different param-

eter settings or pre-processing procedures (examples from our work include [27, 28,

29, 30, 31]). In addition to raw data and code, it is useful to distribute pre-processed

and/or results data (examples include [28, 29, 77] from our work and [74, 87, 88] from

others), especially for computationally intensive benchmarks. This may be combined

with an interactive website, where users can upload results from a newmethod, to be

included in an updated comparison either automatically or by the original authors (e.g.

[35, 89, 90]). Continuous benchmarks, which are continually updated, are especially

convenient (e.g. [91]), but may require significant additional effort.

8.2.10 Reproducible research best practices

Reproducibility of research findings has become an increasing concern in numerous

areas of study [92]. In computational sciences, reproducibility of code and data analy-

ses has been recognized as a useful minimum standard that enables other researchers

to verify analyses [93]. Access to code and data has previously enabled method devel-

opers to uncover potential errors in published benchmarks due to suboptimal usage

of methods [73, 94, 95]. Journal publication policies can play a crucial role in encour-

aging authors to follow these practices [96]; experience shows that statements that

code and data are available on request are often insufficient [97]. In the context of

benchmarking, code and data availability also provides further benefits: for method

Page 197

Essential guidelines for computational method benchmarking.

8

users, code repositories serve as a source of annotated code to runmethods and build

analysis pipelines, while for developers, code repositories can act as a prototype for

future method development work.

Parameter values (including random seeds) and software versions should be clearly

reported to ensure complete reproducibility. For methods that are run using scripts,

these will be recorded within the scripts. In R, the command sessionInfo() gives a

complete summary of package versions, the version of R, and the operating system.

For methods only available via graphical interfaces, parameters and versions must be

recorded manually. Reproducible workflow frameworks, such as the Galaxy platform

[98], can also be helpful. A summary table or spreadsheet of parameter values and

software versions can be published as supplementary information along with the pub-

lication describing the benchmark (e.g. Supporting Information Table S1 in our study

[31]).

Automated workflow management tools and specialized tools for organizing bench-

marks provide sophisticated options for setting up benchmarks and creating a repro-

ducible record, including software environments, package versions, and parameter

values. Examples include SummarizedBenchmark [99], DataPackageR [100], work-

flowr [101], and Dynamic Statistical Comparisons [102]. Some tools (e.g. workflowr)

also provide streamlined options for publishing results online. In machine learning,

OpenML provides a platform to organize and share benchmarks [103]. More general

tools for managing computational workflows, including Snakemake [104], Make, Bio-

conda [105], and conda, can be customized to capture setup information. Container-

ization tools such as Docker and Singularity may be used to encapsulate a software

environment for each method, preserving the package version as well as dependency

packages and the operating system, and facilitating distribution of methods to end

users (e.g. in our study [27]). Best practices from software development are also use-

ful, including unit testing and continuous integration.

Many free online resources are available for sharing code and data, including GitHub

and Bitbucket, repositories for specific data types (e.g. ArrayExpress [106], the Gene

Expression Omnibus [107], and FlowRepository [108]), and more general data repos-

itories (e.g. figshare, Dryad, Zenodo, Bioconductor ExperimentHub, and Mendeley

Data). Customized resources (examples from our work include [29, 77]) can be de-

signed when additional flexibility is needed. Several repositories allow the creation

of digital object identifiers (DOIs) for code or data objects. In general, preference

should be given to publicly funded repositories, which provide greater guarantees for

long-term archival stability [84, 85].

An extensive literature exists on best practices for reproducible computational re-

search (e.g. [109]). Some practices (e.g. containerization) may involve significant

Page 198

8

Essential guidelines for computational method benchmarking.

additional work; however, in our experience, almost all efforts in this area prove use-

ful, especially by facilitating later extensions by ourselves or other researchers.

8.3 Discussion

In this review, we have described a set of key principles for designing a high-quality

computational benchmark. In our view, elements of all of these principles are essen-

tial. However, we have also emphasized that any benchmark will involve trade-offs,

due to limited expertise and resources, and that some principles are less central to

the evaluation. Table 8.1 provides a summary of examples of key trade-offs and pit-

falls related to benchmarking, along with our judgement of how truly essential each

principle is.

A number of potential pitfalls may arise from benchmarking studies (Table 8.1). For

example, subjectivity in the choice of datasets or evaluation metrics could bias the

results. In particular, a benchmark that relies on unrepresentative data or metrics that

do not translate to real-world scenarios may be misleading by showing poor perfor-

mance for methods that otherwise performwell. This could harmmethod users, who

may select an inappropriate method for their analyses, as well as method developers,

who may be discouraged from pursuing promising methodological approaches. In

extreme cases, this could negatively affect the research field by influencing the di-

rection of research efforts. A thorough discussion of the limitations of a benchmark

can help avoid these issues. Over the longer term, critical evaluations of published

benchmarks, so-called meta-benchmarks, will also be informative [10, 13, 14].

Well-designed benchmarking studies provide highly valuable information for users

and developers of computational methods, but require careful consideration of a

number of important design principles. In this review, we have discussed a series of

guidelines for rigorous benchmarking design and implementation, based on our expe-

riences in computational biology. We hope these guidelines will assist computational

researchers to design high-quality, informative benchmarks, which will contribute to

scientific advances through informed selection of methods by users and targeting of

research efforts by developers.

Page 199

Essential guidelines for computational method benchmarking.

8

Table 8.1: Summary of our views regarding how essential each principle is for a truly excellent
benchmark, along with examples of key trade-offs and potential pitfalls relating to each
principle. The higher the number of plus signs, the more central the principle is to the evaluation.

Principle How
essential

Trade-offs Potential pitfalls

1. Defining the purpose and
score

+++ How comprehensive the
benchmark should be

Scope too broad: too much work given
available resources
Scope too narrow: unrepresentative and
possibly misleading results

2. Selection of methods +++ Number of methods to in-
clude

Excluding key methods

3. Selection (or design) of
datasets

+++ Number and types of datasets
to include

Subjectivity in the choice of datasets: e.g.
selecting datasets that are unrepresentative
of real-world applications
Too few datasets or simulation scenarios
Overly simplistic simulations

4. Parameter and software
versions

++ Amount of parameter tuning Extensive parameter tuning for some
methods while using default parameters
for others (e.g. competing methods)

5. Evaluation criteria: key
quantitative performance
metrics

+++
Number and types of
performance metrics

Subjectivity in the choice of metrics: e.g.
selecting metrics that do not translate to
real-world performance
Metrics that give over-optimistic estimates
of performance
Methods may not be directly compara-
ble according to individual metrics (e.g. if
methods are designed for different tasks)

6. Evaluation criteria:
secondary measures

++
Number and types of
performance metrics

Subjectivity of qualitative measures such as
user-friendliness, installation procedures,
and documentation quality
Subjectivity in relative weighting between
multiple metrics
Measures such as runtime and scalability
depend on processor speed and memory

7. Interpretation, guidelines,
and recommendations

++ Generality versus specificity of
recommendations

Performance differences between top-
ranked methods may be minor
Different readers may be interested in dif-
ferent aspects of performance

8. Publication and reporting of
results

+ Amount of resources to
dedicate to building online
resources

Online resources may not be accessible (or
may no longer run) several years later

9. Enabling future extensions ++ Amount of resources to
dedicate to ensuring
extensibility

Selection of methods or datasets for future
extensions may be unrepresentative (e.g.
due to requests from method authors)

10. Reproducible research best
practices

++ Amount of resources to
dedicate to reproducibility

Some tools may not be compatible or ac-
cessible several years later

Page 200

8

Essential guidelines for computational method benchmarking.

8.4 References

[1] Luke Zappia, Belinda Phipson, and Alicia Oshlack. “Exploring the Single-Cell

RNA-Seq Analysis Landscape with the scRNA-Tools Database”. In: PLOS Com-

putational Biology 14.6 (June 2018), e1006245. issn: 1553-7358. doi: 10.1371/

journal.pcbi.1006245.

[2] Anne-Laure Boulesteix et al. “On the Necessity and Design of Studies Compar-

ing Statistical Methods”. In: Biometrical Journal 60.1 (2018), pp. 216–218. issn:

1521-4036. doi: 10.1002/bimj.201700129.

[3] Anne-Laure Boulesteix, Sabine Lauer, andManuel J. A. Eugster. “A Plea for Neu-

tral Comparison Studies in Computational Sciences”. In: PloS One 8.4 (2013),

e61562. issn: 1932-6203. doi: 10.1371/journal.pone.0061562. pmid: 23637855.

[4] Bjoern Peters et al. “Putting Benchmarks in Their Rightful Place: The Heart

of Computational Biology”. In: PLoS computational biology 14.11 (Nov.

2018), e1006494. issn: 1553-7358. doi: 10.1371/journal.pcbi.1006494. pmid:

30408027.

[5] Anne-Laure Boulesteix. “Ten Simple Rules for ReducingOveroptimistic Report-

ing in Methodological Computational Research”. In: PLOS Computational Bi-

ology 11.4 (Apr. 2015), e1004191. issn: 1553-7358. doi: 10.1371/journal.pcbi.

1004191.

[6] Siyuan Zheng. “Benchmarking: Contexts and Details Matter”. In: Genome Bi-

ology 18.1 (May 7, 2017), p. 129. issn: 1474-760X. doi: 10.1186/s13059-017-

1258-3. pmid: 28679434.

[7] Serghei Mangul et al. “Systematic Benchmarking of Omics Computational

Tools”. In: Nature Communications 10.1 (Mar. 27, 2019), p. 1393. issn: 2041-

1723. doi: 10.1038/s41467-019-09406-4. pmid: 30918265.

[8] Raquel Norel, John Jeremy Rice, and Gustavo Stolovitzky. “The Self-

Assessment Trap: Can We All Be Better than Average?”. In: Molecular systems

biology 7.1 (2011), p. 537. issn: 1744-4292. doi: 10.1038/msb.2011.70. pmid:

21988833.

[9] Mohamed Radhouene Aniba, Olivier Poch, and Julie D Thompson. “Issues

in Bioinformatics Benchmarking: The Case Study of Multiple Sequence

Alignment”. In: Nucleic Acids Research 38.21 (Nov. 2010), pp. 7353–7363.

issn: 0305-1048. doi: 10.1093/nar/gkq625. pmid: 20639539.

[10] Anne-Laure Boulesteix, Rory Wilson, and Alexander Hapfelmeier. “Towards

Evidence-Based Computational Statistics: Lessons from Clinical Research

on the Role and Design of Real-Data Benchmark Studies”. In: BMC medical

research methodology 17.1 (Sept. 9, 2017), p. 138. issn: 1471-2288. doi:

10.1186/s12874-017-0417-2. pmid: 28888225.

Page 201

https://doi.org/10.1371/journal.pcbi.1006245
https://doi.org/10.1371/journal.pcbi.1006245
https://doi.org/10.1002/bimj.201700129
https://doi.org/10.1371/journal.pone.0061562
23637855
https://doi.org/10.1371/journal.pcbi.1006494
30408027
https://doi.org/10.1371/journal.pcbi.1004191
https://doi.org/10.1371/journal.pcbi.1004191
https://doi.org/10.1186/s13059-017-1258-3
https://doi.org/10.1186/s13059-017-1258-3
28679434
https://doi.org/10.1038/s41467-019-09406-4
30918265
https://doi.org/10.1038/msb.2011.70
21988833
https://doi.org/10.1093/nar/gkq625
20639539
https://doi.org/10.1186/s12874-017-0417-2
28888225

Essential guidelines for computational method benchmarking.

8

[11] Anne-Laure Boulesteix et al. “A Statistical Framework for Hypothesis Testing

in Real Data Comparison Studies”. In: The American Statistician 69.3 (July 3,

2015), pp. 201–212. issn: 0003-1305. doi: 10.1080/00031305.2015.1005128.

[12] Tim P. Morris, Ian R. White, and Michael J. Crowther. “Using Simulation Studies

to Evaluate Statistical Methods”. In: Statistics in Medicine 38.11 (May 20, 2019),

pp. 2074–2102. issn: 1097-0258. doi: 10.1002/sim.8086. pmid: 30652356.

[13] Paul P. Gardner et al. “Identifying Accurate Metagenome and Amplicon Soft-

ware via a Meta-Analysis of Sequence to Taxonomy Benchmarking Studies”.

In: PeerJ 7 (2019), e6160. issn: 2167-8359. doi: 10 . 7717 / peerj . 6160. pmid:

30631651.

[14] Paul P. Gardner et al. “A Meta-Analysis of Bioinformatics Software Bench-

marks Reveals That Publication-Bias Unduly Influences Software Accuracy”.

In: bioRxiv (Jan. 2, 2017), p. 092205. doi: 10.1101/092205.

[15] Evangelos Evangelou and John P. A. Ioannidis. “Meta-Analysis Methods for

Genome-Wide Association Studies and Beyond”. In: Nature Reviews. Genetics

14.6 (June 2013), pp. 379–389. issn: 1471-0064. doi: 10.1038/nrg3472. pmid:

23657481.

[16] Fangxin Hong and Rainer Breitling. “A Comparison of Meta-Analysis Methods

for Detecting Differentially Expressed Genes in Microarray Experiments”. In:

Bioinformatics (Oxford, England) 24.3 (Feb. 1, 2008), pp. 374–382. issn: 1367-

4811. doi: 10.1093/bioinformatics/btm620. pmid: 18204063.

[17] Paul C. Boutros et al. “Toward Better Benchmarking: Challenge-Based Meth-

ods Assessment in Cancer Genomics”. In: Genome Biology 15.9 (Sept. 17,

2014), p. 462. issn: 1474-760X. doi: 10 . 1186 / s13059 - 014 - 0462 - 7. pmid:

25314947.

[18] Iddo Friedberg et al. “Ten Simple Rules for a Community Computational

Challenge”. In: PLoS computational biology 11.4 (Apr. 2015), e1004150. issn:

1553-7358. doi: 10.1371/journal.pcbi.1004150. pmid: 25906249.

[19] Iven Van Mechelen et al. “Benchmarking in Cluster Analysis: A White Paper”.

In: (Sept. 27, 2018). arXiv: 1809.10496 [stat]. url: http://arxiv.org/abs/1809.
10496 (visited on 09/19/2019).

[20] Alexandre Angers-Loustau et al. “The Challenges of Designing a Bench-

mark Strategy for Bioinformatics Pipelines in the Identification of An-

timicrobial Resistance Determinants Using next Generation Sequencing

Technologies”. In: F1000Research 7 (Dec. 7, 2018), p. 459. issn: 2046-1402.

doi: 10.12688/f1000research.14509.2.

[21] John P. A. Ioannidis. “Meta-Research: Why Research on Research Matters”. In:

PLoS biology 16.3 (Mar. 2018), e2005468. issn: 1545-7885. doi: 10.1371/journal.

pbio.2005468. pmid: 29534060.

Page 202

https://doi.org/10.1080/00031305.2015.1005128
https://doi.org/10.1002/sim.8086
30652356
https://doi.org/10.7717/peerj.6160
30631651
https://doi.org/10.1101/092205
https://doi.org/10.1038/nrg3472
23657481
https://doi.org/10.1093/bioinformatics/btm620
18204063
https://doi.org/10.1186/s13059-014-0462-7
25314947
https://doi.org/10.1371/journal.pcbi.1004150
25906249
https://arxiv.org/abs/1809.10496
http://arxiv.org/abs/1809.10496
http://arxiv.org/abs/1809.10496
https://doi.org/10.12688/f1000research.14509.2
https://doi.org/10.1371/journal.pbio.2005468
https://doi.org/10.1371/journal.pbio.2005468
29534060

8

Essential guidelines for computational method benchmarking.

[22] Lukas M. Weber et al. “Diffcyt: Differential Discovery in High-Dimensional

Cytometry via High-Resolution Clustering”. In: Communications Biology 2

(2019), p. 183. issn: 2399-3642. doi: 10 . 1038/s42003- 019- 0415- 5. pmid:

31098416.

[23] Malgorzata Nowicka and Mark D. Robinson. “DRIMSeq: A Dirichlet-

Multinomial Framework for Multivariate Count Outcomes in Genomics”.

In: F1000Research 5 (2016), p. 1356. issn: 2046-1402. doi: 10 . 12688 /

f1000research.8900.2. pmid: 28105305.

[24] Jacob H. Levine et al. “Data-Driven Phenotypic Dissection of AML Reveals

Progenitor-like Cells That Correlate with Prognosis”. In: Cell 162.1 (July 2,

2015), pp. 184–197. issn: 1097-4172. doi: 10.1016/j.cell .2015.05.047. pmid:

26095251.

[25] Xiaobei Zhou, Helen Lindsay, and Mark D. Robinson. “Robustly Detecting Dif-

ferential Expression in RNA Sequencing Data Using Observation Weights”. In:

Nucleic Acids Research 42.11 (June 2014), e91. issn: 1362-4962. doi: 10.1093/

nar/gku310. pmid: 24753412.

[26] Charity W. Law et al. “Voom: Precision Weights Unlock Linear Model Analysis

Tools for RNA-Seq Read Counts”. In: Genome Biology 15.2 (Feb. 3, 2014), R29.

issn: 1474-760X. doi: 10.1186/gb-2014-15-2-r29. pmid: 24485249.

[27] Wouter Saelens et al. “A Comparison of Single-Cell Trajectory Inference

Methods”. In: Nature Biotechnology 37 (May 2019). issn: 15461696. doi:

10.1038/s41587-019-0071-9.

[28] Angelo Duò, Mark D. Robinson, and Charlotte Soneson. “A Systematic

Performance Evaluation of Clustering Methods for Single-Cell RNA-

Seq Data”. In: F1000Research 7 (2018), p. 1141. issn: 2046-1402. doi:

10.12688/f1000research.15666.2. pmid: 30271584.

[29] Charlotte Soneson and Mark D. Robinson. “Bias, Robustness and Scalability

in Single-Cell Differential Expression Analysis”. In: Nature Methods 15.4

(Apr. 2018), pp. 255–261. issn: 1548-7105. doi: 10 .1038/nmeth.4612. pmid:

29481549.

[30] Wouter Saelens, Robrecht Cannoodt, and Yvan Saeys. “A Comprehensive

Evaluation of Module Detection Methods for Gene Expression Data”. In:

Nature Communications 9.1 (Mar. 2018), p. 1090. issn: 2041-1723. doi:

10.1038/s41467-018-03424-4.

[31] LukasM.Weber andMark D. Robinson. “Comparison of ClusteringMethods for

High-Dimensional Single-Cell Flow and Mass Cytometry Data”. In: Cytometry

Part A 89.12 (2016), pp. 1084–1096. issn: 1552-4930. doi: 10 . 1002/cyto . a .

23030.

Page 203

https://doi.org/10.1038/s42003-019-0415-5
31098416
https://doi.org/10.12688/f1000research.8900.2
https://doi.org/10.12688/f1000research.8900.2
28105305
https://doi.org/10.1016/j.cell.2015.05.047
26095251
https://doi.org/10.1093/nar/gku310
https://doi.org/10.1093/nar/gku310
24753412
https://doi.org/10.1186/gb-2014-15-2-r29
24485249
https://doi.org/10.1038/s41587-019-0071-9
https://doi.org/10.12688/f1000research.15666.2
30271584
https://doi.org/10.1038/nmeth.4612
29481549
https://doi.org/10.1038/s41467-018-03424-4
https://doi.org/10.1002/cyto.a.23030
https://doi.org/10.1002/cyto.a.23030

Essential guidelines for computational method benchmarking.

8

[32] Keegan Korthauer et al. “A Practical Guide to Methods Controlling False Dis-

coveries in Computational Biology”. In: Genome Biology 20.1 (Apr. 6, 2019),

p. 118. issn: 1474-760X. doi: 10.1186/s13059-019-1716-1. pmid: 31164141.

[33] Saskia Freytag et al. “Comparison of Clustering Tools in R for Medium-Sized

10x Genomics Single-Cell RNA-Sequencing Data”. In: F1000Research 7

(2018), p. 1297. issn: 2046-1402. doi: 10.12688/f1000research.15809.2. pmid:

30228881.

[34] Giacomo Baruzzo et al. “Simulation-Based Comprehensive Benchmarking of

RNA-Seq Aligners”. In: Nature Methods 14.2 (Feb. 2017), pp. 135–139. issn:

1548-7105. doi: 10.1038/nmeth.4106. pmid: 27941783.

[35] Alexander Kanitz et al. “Comparative Assessment of Methods for the Compu-

tational Inference of Transcript Isoform Abundance from RNA-Seq Data”. In:

Genome Biology 16 (July 23, 2015), p. 150. issn: 1474-760X. doi: 10 . 1186 /

s13059-015-0702-5. pmid: 26201343.

[36] Charlotte Soneson andMauro Delorenzi. “AComparison ofMethods for Differ-

ential Expression Analysis of RNA-Seq Data”. In: BMC bioinformatics 14 (Mar. 9,

2013), p. 91. issn: 1471-2105. doi: 10.1186/1471-2105-14-91. pmid: 23497356.

[37] Franck Rapaport et al. “Comprehensive Evaluation of Differential Gene Expres-

sion Analysis Methods for RNA-SeqData”. In:Genome Biology 14.9 (2013), R95.

issn: 1474-760X. doi: 10.1186/gb-2013-14-9-r95. pmid: 24020486.

[38] Marie-Agnès Dillies et al. “A Comprehensive Evaluation of NormalizationMeth-

ods for IlluminaHigh-Throughput RNA SequencingData Analysis”. In: Briefings

in Bioinformatics 14.6 (Nov. 2013), pp. 671–683. issn: 1477-4054. doi: 10.1093/

bib/bbs046. pmid: 22988256.

[39] Daniel Sage et al. “Quantitative Evaluation of Software Packages for Single-

Molecule Localization Microscopy”. In: Nature Methods 12.8 (Aug. 2015),

pp. 717–724. issn: 1548-7105. doi: 10.1038/nmeth.3442. pmid: 26076424.

[40] Matthew T. Weirauch et al. “Evaluation of Methods for Modeling Transcrip-

tion Factor Sequence Specificity”. In: Nature Biotechnology 31.2 (Feb. 2013),

pp. 126–134. issn: 1546-1696. doi: 10.1038/nbt.2486. pmid: 23354101.

[41] James C. Costello et al. “A Community Effort to Assess and Improve Drug

Sensitivity Prediction Algorithms”. In: Nature Biotechnology 32.12 (Dec. 2014),

pp. 1202–1212. issn: 1546-1696. doi: 10.1038/nbt.2877. pmid: 24880487.

[42] Robert Küffner et al. “Crowdsourced Analysis of Clinical Trial Data to Pre-

dict Amyotrophic Lateral Sclerosis Progression”. In: Nature Biotechnology

33.1 (Jan. 2015), pp. 51–57. issn: 1546-1696. doi: 10 . 1038 /nbt . 3051. pmid:

25362243.

[43] Adam D. Ewing et al. “Combining Tumor Genome Simulation with Crowd-

sourcing to Benchmark Somatic Single-Nucleotide-Variant Detection”. In: Na-

Page 204

https://doi.org/10.1186/s13059-019-1716-1
31164141
https://doi.org/10.12688/f1000research.15809.2
30228881
https://doi.org/10.1038/nmeth.4106
27941783
https://doi.org/10.1186/s13059-015-0702-5
https://doi.org/10.1186/s13059-015-0702-5
26201343
https://doi.org/10.1186/1471-2105-14-91
23497356
https://doi.org/10.1186/gb-2013-14-9-r95
24020486
https://doi.org/10.1093/bib/bbs046
https://doi.org/10.1093/bib/bbs046
22988256
https://doi.org/10.1038/nmeth.3442
26076424
https://doi.org/10.1038/nbt.2486
23354101
https://doi.org/10.1038/nbt.2877
24880487
https://doi.org/10.1038/nbt.3051
25362243

8

Essential guidelines for computational method benchmarking.

ture Methods 12.7 (July 2015), pp. 623–630. issn: 1548-7105. doi: 10 .1038/

nmeth.3407.

[44] Steven M. Hill et al. “Inferring Causal Molecular Networks: Empirical Assess-

ment through a Community-Based Effort”. In:NatureMethods 13.4 (Apr. 2016),

pp. 310–318. issn: 1548-7105. doi: 10.1038/nmeth.3773. pmid: 26901648.

[45] Nima Aghaeepour et al. “Critical Assessment of Automated Flow Cytometry

Data Analysis Techniques.”. In: Nature methods 10.3 (Mar. 2013), pp. 228–38.

issn: 1548-7105. doi: 10.1038/nmeth.2365. pmid: 23396282.

[46] Nima Aghaeepour et al. “A Benchmark for Evaluation of Algorithms for Identi-

fication of Cellular Correlates of Clinical Outcomes”. In: Cytometry Part A 89.1

(2016), pp. 16–21. issn: 1552-4930. doi: 10.1002/cyto.a.22732.

[47] John Moult et al. “Critical Assessment of Methods of Protein Structure Pre-

diction (CASP)-Round XII”. In: Proteins 86 Suppl 1 (Mar. 2018), pp. 7–15. issn:

1097-0134. doi: 10.1002/prot.25415. pmid: 29082672.

[48] John Moult et al. “Critical Assessment of Methods of Protein Structure Predic-

tion: Progress and New Directions in Round XI”. In: Proteins 84 Suppl 1 (Sept.

2016), pp. 4–14. issn: 1097-0134. doi: 10.1002/prot.25064. pmid: 27171127.

[49] Alexander Sczyrba et al. “Critical Assessment of Metagenome Interpretation-a

Benchmark of Metagenomics Software”. In: Nature Methods 14.11 (Nov. 2017),

pp. 1063–1071. issn: 1548-7105. doi: 10.1038/nmeth.4458. pmid: 28967888.

[50] Dent Earl et al. “Assemblathon 1: A Competitive Assessment of de Novo Short

Read Assembly Methods”. In: Genome Research 21.12 (Dec. 2011), pp. 2224–

2241. issn: 1549-5469. doi: 10.1101/gr.126599.111. pmid: 21926179.

[51] Keith R. Bradnam et al. “Assemblathon 2: Evaluating de Novo Methods of

Genome Assembly in Three Vertebrate Species”. In: GigaScience 2.1 (Dec. 1,

2013). doi: 10.1186/2047-217X-2-10.

[52] MAQC Consortium et al. “The MicroArray Quality Control (MAQC) Project

Shows Inter- and Intraplatform Reproducibility of Gene Expression

Measurements”. In: Nature Biotechnology 24.9 (Sept. 2006), pp. 1151–

1161. issn: 1087-0156. doi: 10.1038/nbt1239. pmid: 16964229.

[53] Leming Shi et al. “TheMicroArrayQuality Control (MAQC)-II Study of Common

Practices for the Development and Validation of Microarray-Based Predictive

Models”. In: Nature Biotechnology 28.8 (Aug. 2010), pp. 827–838. issn: 1546-

1696. doi: 10.1038/nbt.1665. pmid: 20676074.

[54] SEQC/MAQC-III Consortium. “A Comprehensive Assessment of RNA-Seq Ac-

curacy, Reproducibility and Information Content by the Sequencing Quality

Control Consortium”. In: Nature Biotechnology 32.9 (Sept. 2014), pp. 903–

914. issn: 1546-1696. doi: 10.1038/nbt.2957. pmid: 25150838.

Page 205

https://doi.org/10.1038/nmeth.3407
https://doi.org/10.1038/nmeth.3407
https://doi.org/10.1038/nmeth.3773
26901648
https://doi.org/10.1038/nmeth.2365
23396282
https://doi.org/10.1002/cyto.a.22732
https://doi.org/10.1002/prot.25415
29082672
https://doi.org/10.1002/prot.25064
27171127
https://doi.org/10.1038/nmeth.4458
28967888
https://doi.org/10.1101/gr.126599.111
21926179
https://doi.org/10.1186/2047-217X-2-10
https://doi.org/10.1038/nbt1239
16964229
https://doi.org/10.1038/nbt.1665
20676074
https://doi.org/10.1038/nbt.2957
25150838

Essential guidelines for computational method benchmarking.

8

[55] Peter Krusche et al. “Best Practices for Benchmarking Germline Small-Variant

Calls in HumanGenomes”. In:Nature Biotechnology 37.5 (May 2019), pp. 555–

560. issn: 1546-1696. doi: 10.1038/s41587-019-0054-x.

[56] Charlotte Soneson and Mark D. Robinson. “Towards Unified Quality Verifi-

cation of Synthetic Count Data with countsimQC”. In: Bioinformatics 34.4

(Feb. 15, 2018), pp. 691–692. issn: 1367-4803. doi: 10.1093/bioinformatics/

btx631.

[57] Keegan Korthauer et al. “Detection and Accurate False Discovery Rate

Control of Differentially Methylated Regions from Whole Genome Bisulfite

Sequencing”. In: Biostatistics (Oxford, England) 20.3 (Jan. 7, 2019), pp. 367–

383. issn: 1468-4357. doi: 10.1093/biostatistics/kxy007. pmid: 29481604.

[58] Ségolène Caboche et al. “Comparison of Mapping Algorithms Used in High-

Throughput Sequencing: Application to Ion Torrent Data”. In: BMC genomics

15 (Apr. 5, 2014), p. 264. issn: 1471-2164. doi: 10.1186/1471- 2164- 15- 264.

pmid: 24708189.

[59] Dominik G. Grimm et al. “The Evaluation of Tools Used to Predict the Impact of

Missense Variants Is Hindered by TwoTypes of Circularity”. In:HumanMutation

36.5 (May 2015), pp. 513–523. issn: 1059-7794. doi: 10 . 1002/humu.22768.

pmid: 25684150.

[60] Monika Jelizarow et al. “Over-Optimism in Bioinformatics: An Illustration”. In:

Bioinformatics 26.16 (Aug. 2010), pp. 1990–1998. issn: 1367-4803. doi: 10 .

1093/bioinformatics/btq323.

[61] Lichun Jiang et al. “Synthetic Spike-in Standards for RNA-Seq Experiments”.

In: Genome Research 21.9 (Sept. 2011), pp. 1543–1551. issn: 1549-5469. doi:

10.1101/gr.121095.111. pmid: 21816910.

[62] Daniel R. Garalde et al. “Highly Parallel Direct RNA Sequencing on an Array

of Nanopores”. In: Nature Methods 15.3 (Mar. 2018), pp. 201–206. issn: 1548-

7105. doi: 10.1038/nmeth.4577. pmid: 29334379.

[63] Fang Fang et al. “Genomic Landscape of Human Allele-Specific DNA

Methylation”. In: Proceedings of the National Academy of Sciences of the

United States of America 109.19 (May 8, 2012), pp. 7332–7337. issn: 1091-6490.

doi: 10.1073/pnas.1201310109. pmid: 22523239.

[64] Nicholas Schaum et al. “Single-Cell Transcriptomics of 20 Mouse Organs Cre-

ates a Tabula Muris”. In: Nature 562.7727 (Oct. 2018), pp. 367–372. issn: 1476-

4687. doi: 10.1038/s41586-018-0590-4.

[65] Grace X. Y. Zheng et al. “Massively Parallel Digital Transcriptional Profiling of

Single Cells”. In: Nature Communications 8 (Jan. 16, 2017), p. 14049. issn:

2041-1723. doi: 10.1038/ncomms14049. pmid: 28091601.

[66] Luyi Tian et al. “Benchmarking Single Cell RNA-Sequencing Analysis Pipelines

Using Mixture Control Experiments”. In: Nature Methods 16.6 (June 2019),

Page 206

https://doi.org/10.1038/s41587-019-0054-x
https://doi.org/10.1093/bioinformatics/btx631
https://doi.org/10.1093/bioinformatics/btx631
https://doi.org/10.1093/biostatistics/kxy007
29481604
https://doi.org/10.1186/1471-2164-15-264
24708189
https://doi.org/10.1002/humu.22768
25684150
https://doi.org/10.1093/bioinformatics/btq323
https://doi.org/10.1093/bioinformatics/btq323
https://doi.org/10.1101/gr.121095.111
21816910
https://doi.org/10.1038/nmeth.4577
29334379
https://doi.org/10.1073/pnas.1201310109
22523239
https://doi.org/10.1038/s41586-018-0590-4
https://doi.org/10.1038/ncomms14049
28091601

8

Essential guidelines for computational method benchmarking.

pp. 479–487. issn: 1548-7105. doi: 10 . 1038 / s41592 - 019 - 0425 - 8. pmid:

31133762.

[67] Eirini Arvaniti and Manfred Claassen. “Sensitive Detection of Rare Disease-

Associated Cell Subsets via Representation Learning”. In: Nature Communica-

tions 8.1 (Apr. 6, 2017), pp. 1–10. issn: 2041-1723. doi: 10.1038/ncomms14825.

[68] Guillem Rigaill et al. “Synthetic Data Sets for the Identification of Key Ingre-

dients for RNA-Seq Differential Analysis”. In: Briefings in Bioinformatics 19.1

(Jan. 1, 2018), pp. 65–76. issn: 1477-4054. doi: 10.1093/bib/bbw092. pmid:

27742662.

[69] Benedikt Löwes et al. “The BRaliBase Dent-a Tale of Benchmark Design and

Interpretation”. In: Briefings in Bioinformatics 18.2 (Jan. 3, 2017), pp. 306–311.

issn: 1477-4054. doi: 10.1093/bib/bbw022. pmid: 26984616.

[70] Raphael Couronné, Philipp Probst, and Anne-Laure Boulesteix. “Random For-

est versus Logistic Regression: A Large-Scale Benchmark Experiment”. In: BMC

Bioinformatics 19.1 (July 17, 2018), p. 270. issn: 1471-2105. doi: 10.1186/s12859-

018-2264-5.

[71] Jochen Schneider et al. “Mortality Risk for Acute Cholangitis (MAC): A Risk Pre-

diction Model for in-Hospital Mortality in Patients with Acute Cholangitis”. In:

BMC gastroenterology 16 (Feb. 9, 2016), p. 15. issn: 1471-230X. doi: 10.1186/

s12876-016-0428-1. pmid: 26860903.

[72] Qiwen Hu and Casey S. Greene. “Parameter Tuning Is a Key Part of Dimen-

sionality Reduction via Deep Variational Autoencoders for Single Cell RNA

Transcriptomics”. In: Pacific Symposium on Biocomputing. Pacific Symposium

on Biocomputing 24 (2019), pp. 362–373. issn: 2335-6936. pmid: 30963075.

[73] Jorge Vaquero-Garcia, Scott Norton, and Yoseph Barash. “LeafCutter vs. MA-

JIQ andComparing Software in the Fast Moving Field of Genomics”. In: bioRxiv

(Nov. 8, 2018), p. 463927. doi: 10.1101/463927.

[74] Christian Wiwie, Jan Baumbach, and Richard Röttger. “Comparing the Per-

formance of Biomedical Clustering Methods”. In: Nature Methods 12.11 (Nov.

2015), pp. 1033–1038. issn: 1548-7105. doi: 10 . 1038 / nmeth . 3583. pmid:

26389570.

[75] Takaya Saito and Marc Rehmsmeier. “The Precision-Recall Plot Is More Infor-

mative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced

Datasets”. In: PloS One 10.3 (2015), e0118432. issn: 1932-6203. doi: 10.1371/

journal.pone.0118432. pmid: 25738806.

[76] David M. W. Powers. “Visualization of Tradeoff in Evaluation: From Precision-

Recall & PN to LIFT, ROC & BIRD”. In: (May 3, 2015). arXiv: 1505.00401 [cs,
stat]. url: http://arxiv.org/abs/1505.00401 (visited on 09/19/2019).

Page 207

https://doi.org/10.1038/s41592-019-0425-8
31133762
https://doi.org/10.1038/ncomms14825
https://doi.org/10.1093/bib/bbw092
27742662
https://doi.org/10.1093/bib/bbw022
26984616
https://doi.org/10.1186/s12859-018-2264-5
https://doi.org/10.1186/s12859-018-2264-5
https://doi.org/10.1186/s12876-016-0428-1
https://doi.org/10.1186/s12876-016-0428-1
26860903
30963075
https://doi.org/10.1101/463927
https://doi.org/10.1038/nmeth.3583
26389570
https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1371/journal.pone.0118432
25738806
https://arxiv.org/abs/1505.00401
https://arxiv.org/abs/1505.00401
http://arxiv.org/abs/1505.00401

Essential guidelines for computational method benchmarking.

8

[77] Charlotte Soneson and Mark D. Robinson. “iCOBRA: Open, Reproducible,

Standardized and Live Method Benchmarking”. In: Nature Methods 13.4 (Apr.

2016), p. 283. issn: 1548-7105. doi: 10.1038/nmeth.3805. pmid: 27027585.

[78] Charlotte Soneson, Michael I. Love, and Mark D. Robinson. “Differential

Analyses for RNA-Seq: Transcript-Level Estimates Improve Gene-Level

Inferences”. In: F1000Research 4 (Feb. 29, 2016). issn: 2046-1402. doi:

10.12688/f1000research.7563.2. pmid: 26925227.

[79] Stinus Lindgreen, Karen L. Adair, and Paul P. Gardner. “An Evaluation of the

Accuracy and Speed of Metagenome Analysis Tools”. In: Scientific Reports

6 (Jan. 18, 2016), p. 19233. issn: 2045-2322. doi: 10.1038/srep19233. pmid:

26778510.

[80] Alexey Gurevich et al. “QUAST: Quality Assessment Tool for Genome

Assemblies”. In: Bioinformatics (Oxford, England) 29.8 (Apr. 15, 2013),

pp. 1072–1075. issn: 1367-4811. doi: 10 .1093/bioinformatics/btt086. pmid:

23422339.

[81] Giuseppe Narzisi and Bud Mishra. “Comparing de Novo Genome Assembly:

The Long and Short of It”. In: PloS One 6.4 (Apr. 29, 2011), e19175. issn: 1932-

6203. doi: 10.1371/journal.pone.0019175. pmid: 21559467.

[82] Jacob Schreiber et al. “A Pitfall for Machine Learning Methods Aiming to Pre-

dict across Cell Types”. In: bioRxiv (Jan. 4, 2019), p. 512434. doi: 10 . 1101 /

512434.

[83] Bernd Bischl, Julia Schiffner, and ClausWeihs. “Benchmarking Local Classifica-

tion Methods”. In: Computational Statistics 28.6 (Dec. 1, 2013), pp. 2599–2619.

issn: 1613-9658. doi: 10.1007/s00180-013-0420-y.

[84] Serghei Mangul et al. “Improving the Usability and Archival Stability of Bioin-

formatics Software”. In: Genome Biology 20.1 (Feb. 27, 2019), p. 47. issn: 1474-

760X. doi: 10.1186/s13059-019-1649-8. pmid: 30813962.

[85] Serghei Mangul et al. “Challenges and Recommendations to Improve the In-

stallability and Archival Stability of Omics Computational Tools”. In: PLoS biol-

ogy 17.6 (June 2019), e3000333. issn: 1545-7885. doi: 10.1371/journal.pbio.

3000333. pmid: 31220077.

[86] Eva K. Freyhult, Jonathan P. Bollback, and Paul P. Gardner. “Exploring Genomic

Dark Matter: A Critical Assessment of the Performance of Homology Search

Methods on Noncoding RNA”. In: Genome Research 17.1 (Jan. 2007), pp. 117–

125. issn: 1088-9051. doi: 10.1101/gr.5890907. pmid: 17151342.

[87] Nicholas A. Bokulich et al. “Mockrobiota: A Public Resource for Microbiome

Bioinformatics Benchmarking”. In:mSystems 1.5 (Sept. 2016). issn: 2379-5077.

doi: 10.1128/mSystems.00062-16. pmid: 27822553.

[88] Shane Ó Conchúir et al. “A Web Resource for Standardized Benchmark

Datasets, Metrics, and Rosetta Protocols for Macromolecular Modeling and

Page 208

https://doi.org/10.1038/nmeth.3805
27027585
https://doi.org/10.12688/f1000research.7563.2
26925227
https://doi.org/10.1038/srep19233
26778510
https://doi.org/10.1093/bioinformatics/btt086
23422339
https://doi.org/10.1371/journal.pone.0019175
21559467
https://doi.org/10.1101/512434
https://doi.org/10.1101/512434
https://doi.org/10.1007/s00180-013-0420-y
https://doi.org/10.1186/s13059-019-1649-8
30813962
https://doi.org/10.1371/journal.pbio.3000333
https://doi.org/10.1371/journal.pbio.3000333
31220077
https://doi.org/10.1101/gr.5890907
17151342
https://doi.org/10.1128/mSystems.00062-16
27822553

8

Essential guidelines for computational method benchmarking.

Design”. In: PLOS ONE 10.9 (Sept. 2015), e0130433. issn: 1932-6203. doi:

10.1371/journal.pone.0130433.

[89] Leslie M. Cope et al. “A Benchmark for Affymetrix GeneChip Expression

Measures”. In: Bioinformatics (Oxford, England) 20.3 (Feb. 12, 2004), pp. 323–

331. issn: 1367-4803. doi: 10.1093/bioinformatics/btg410. pmid: 14960458.

[90] Rafael A. Irizarry, Zhijin Wu, and Harris A. Jaffee. “Comparison of Affymetrix

GeneChip Expression Measures”. In: Bioinformatics (Oxford, England) 22.7

(Apr. 1, 2006), pp. 789–794. issn: 1367-4803. doi: 10 . 1093 /bioinformatics /

btk046. pmid: 16410320.

[91] Michael Barton. Nucleotides · Genome Assembler Benchmarking. Oct. 2014.

url: http://nucleotid.es (visited on 09/20/2019).

[92] John P. A. Ioannidis. “Why Most Published Research Findings Are False”. In:

PLoS medicine 2.8 (Aug. 2005), e124. issn: 1549-1676. doi: 10.1371/ journal .

pmed.0020124. pmid: 16060722.

[93] Roger D. Peng. “Reproducible Research in Computational Science”. In: Sci-

ence (New York, N.Y.) 334.6060 (Dec. 2, 2011), pp. 1226–1227. issn: 1095-9203.

doi: 10.1126/science.1213847. pmid: 22144613.

[94] Xiaobei Zhou and Mark D. Robinson. “Do Count-Based Differential Expression

Methods Perform Poorly When Genes Are Expressed in Only One Condition?”.

In: Genome Biology 16 (Oct. 8, 2015), p. 222. issn: 1474-760X. doi: 10.1186/

s13059-015-0781-3. pmid: 26450178.

[95] Xiaobei Zhou, Alicia Oshlack, and Mark D. Robinson. “miRNA-Seq Normaliza-

tion Comparisons Need Improvement”. In: RNA (New York, N.Y.) 19.6 (June

2013), pp. 733–734. issn: 1469-9001. doi: 10 . 1261 / rna . 037895 . 112. pmid:

23616640.

[96] Benjamin Hofner, Matthias Schmid, and Lutz Edler. “Reproducible Research in

Statistics: A Review and Guidelines for the Biometrical Journal”. In: Biometri-

cal Journal. Biometrische Zeitschrift 58.2 (Mar. 2016), pp. 416–427. issn: 1521-

4036. doi: 10.1002/bimj.201500156. pmid: 26711717.

[97] Anne-Laure Boulesteix et al. “Making Complex Prediction Rules Appli-

cable for Readers: Current Practice in Random Forest Literature and

Recommendations”. In: Biometrical Journal. Biometrische Zeitschrift 61.5

(Sept. 2019), pp. 1314–1328. issn: 1521-4036. doi: 10.1002/bimj.201700243.

pmid: 30069934.

[98] Enis Afgan et al. “The Galaxy Platform for Accessible, Reproducible and Collab-

orative Biomedical Analyses: 2018 Update”. In: Nucleic Acids Research 46.W1

(Feb. 7, 2018), W537–W544. issn: 1362-4962. doi: 10.1093/nar/gky379. pmid:

29790989.

[99] Patrick K. Kimes and Alejandro Reyes. “Reproducible and Replicable Compar-

isons Using SummarizedBenchmark”. In: Bioinformatics (Oxford, England) 35.1

Page 209

https://doi.org/10.1371/journal.pone.0130433
https://doi.org/10.1093/bioinformatics/btg410
14960458
https://doi.org/10.1093/bioinformatics/btk046
https://doi.org/10.1093/bioinformatics/btk046
16410320
http://nucleotid.es
https://doi.org/10.1371/journal.pmed.0020124
https://doi.org/10.1371/journal.pmed.0020124
16060722
https://doi.org/10.1126/science.1213847
22144613
https://doi.org/10.1186/s13059-015-0781-3
https://doi.org/10.1186/s13059-015-0781-3
26450178
https://doi.org/10.1261/rna.037895.112
23616640
https://doi.org/10.1002/bimj.201500156
26711717
https://doi.org/10.1002/bimj.201700243
30069934
https://doi.org/10.1093/nar/gky379
29790989

Essential guidelines for computational method benchmarking.

8

(Jan. 1, 2019), pp. 137–139. issn: 1367-4811. doi: 10 . 1093 / bioinformatics /

bty627. pmid: 30016409.

[100] Greg Finak et al. “DataPackageR: Reproducible Data Preprocessing, Standard-

ization and Sharing Using R/Bioconductor for Collaborative Data Analysis”. In:

Gates Open Research 2 (July 10, 2018), p. 31. issn: 2572-4754. doi: 10.12688/

gatesopenres.12832.2. pmid: 30234197.

[101] John Blischak, Peter Carbonetto, and Matthew Stephens.Workflowr: A Frame-

work for Reproducible and Collaborative Data Science. R package version 1.4.0.

2019. url: https://CRAN.R-project.org/package=workflowr.

[102] G Wang, Matthew Stephens, and Peter Carbonetto. DSC: Dynamic Statistical

Comparisons. Apr. 2016. url: https://stephenslab.github.io/dsc-wiki/ index.

html (visited on 09/20/2019).

[103] Joaquin Vanschoren et al. “OpenML: Networked Science in Machine

Learning”. In: SIGKDD Explor. Newsl. 15.2 (June 2014), pp. 49–60. issn:

1931-0145. doi: 10.1145/2641190.2641198.

[104] Johannes Köster and Sven Rahmann. “Snakemake–a Scalable Bioinformatics

Workflow Engine”. In: Bioinformatics (Oxford, England) 28.19 (Oct. 1, 2012),

pp. 2520–2522. issn: 1367-4811. doi: 10.1093/bioinformatics/bts480. pmid:

22908215.

[105] Björn Grüning et al. “Bioconda: Sustainable and Comprehensive Software Dis-

tribution for the Life Sciences”. In: Nature Methods 15.7 (July 2018), pp. 475–

476. issn: 1548-7105. doi: 10.1038/s41592-018-0046-7. pmid: 29967506.

[106] Nikolay Kolesnikov et al. “ArrayExpress Update–Simplifying Data Submissions”.

In:Nucleic Acids Research 43 (Database issue Jan. 2015), pp. D1113–1116. issn:

1362-4962. doi: 10.1093/nar/gku1057. pmid: 25361974.

[107] Tanya Barrett et al. “NCBI GEO: Archive for Functional Genomics Data Sets–

Update”. In: Nucleic Acids Research 41 (Database issue Jan. 2013), pp. D991–

995. issn: 1362-4962. doi: 10.1093/nar/gks1193. pmid: 23193258.

[108] Josef Spidlen et al. “FlowRepository: A Resource of Annotated FlowCytometry

Datasets Associated with Peer-Reviewed Publications”. In: Cytometry Part A

81A.9 (2012), pp. 727–731. issn: 1552-4930. doi: 10.1002/cyto.a.22106.

[109] Geir Kjetil Sandve et al. “Ten Simple Rules for Reproducible Computational

Research”. In: PLoS computational biology 9.10 (Oct. 2013), e1003285. issn:

1553-7358. doi: 10.1371/journal.pcbi.1003285. pmid: 24204232.

Page 210

https://doi.org/10.1093/bioinformatics/bty627
https://doi.org/10.1093/bioinformatics/bty627
30016409
https://doi.org/10.12688/gatesopenres.12832.2
https://doi.org/10.12688/gatesopenres.12832.2
30234197
https://CRAN.R-project.org/package=workflowr
https://stephenslab.github.io/dsc-wiki/index.html
https://stephenslab.github.io/dsc-wiki/index.html
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1093/bioinformatics/bts480
22908215
https://doi.org/10.1038/s41592-018-0046-7
29967506
https://doi.org/10.1093/nar/gku1057
25361974
https://doi.org/10.1093/nar/gks1193
23193258
https://doi.org/10.1002/cyto.a.22106
https://doi.org/10.1371/journal.pcbi.1003285
24204232

9 | Discussion

Page 211

Discussion.

9
9.1 Impact of this work

In this work, we made scientific contributions to the field of computational biology

applied to single-cell omics. More specifically, we developed approaches for perform-

ing trajectory inference and network inference analyses for single-cell omics, as well

as approaches for assessing the performance of such methods in a quantitative way.

The contribution with the largest impact in the field is the large-scale comparison of

45 TI methods. Based on our results, we provided guidelines on how to perform a TI

analysis and developed a toolkit for performing a inferring and interpreting trajectories

using any of thesemethods. Since such guidelines were hitherto lacking, they are now

commonly disseminated in manuscripts [1, 2], courses [3, 4], and slides shown during

keynote caffeine refuelling sessions [5]. These disseminations are having a significant

impact in how TI analyses are being performed in academia and industry alike.

This dissertation commences with a rant on low self-assessment rates of method

developers. As a result, we developed a simulator of in silico single cells, that allow

quantifying the accuracy the prediction of a tool, even if the real data required to

perform this analysis does not exist yet. While the manuscript is not published yet,

dyngen has already been used to evaluate trajectory inference [6], trajectory-based

differential expression [7], and network inference [8] methods.

9.2 Outlook

The types of computational analyses presented in Section 1.2 (Clustering, DE, DR, TI,

NI) have all become routine methodologies for analysing and interpreting single-cell

omics data. With projects like the Human Cell Atlas [9] soon to be churning out mil-

lions of single-cell profiles on a regular basis, research in high-throughput computa-

tional tools to analyse these data in an unsupervised approach becomes increasingly

relevant.

Here, we discuss several promising categories of computational methods (Figure 9.1)

that are mostly in an exploratory stage but show promising results towards becoming

another major computational workhorse in single-cell biology.

9.2.1 Trajectory differential expression

Trajectory inference methods have made transformative changes in single-cell omics

by allowing to study how cells change during a dynamic process of interest in a high-

throughput and unsupervised approach. A crucial aspect in analysing and interpreting

Page 212

9

Discussion.

Advanced methods

Core methods

Models & applications

Single-cell
omics

Differential
expression

Dimensionality
reduction

Trajectory
inference

Regulatory
network

inference

Differential
network

inference

Casewise
network

inference

Dynamic
network

inference

Cell population
delineation

Rare cell type
identification

Visualisation
& interpretation

Denoising

Derive lineage
tree wiring

Identify cellular
states and

branch points

Trajectory
alignment

Trajectory
differential
expression

Intercellular
network

inference
Niche modelling

Regulatory
cascades

Intra-population
regulatory
diversity

Discover
regulatory

mechanisms

Patient / genotype /
population
differential
regulation

Interactions
driving

decision-making

Intercellular
feedback &

cascades

Clustering

Population
signatures

Find lineage-
associated

genes

Patient-specific
trajectory

differences

Precision
medicine

Figure 9.1: Developments in computational methods for single-cell omics. Adapted from presenta-
tions by Wouter Saelens and myself.

the resulting trajectories is the discovery of geneswhose expression significantly shifts

in a region of interest within the trajectory, called Trajectory Differential Expression

(TDE).

Several trajectory inference methods offer TDE functionality as part of downstream

analysis and interpretation of the outputted trajectories [10, 11, 12, 13]. However, cur-

rent approaches typically cluster cells and perform differential expression analyses

between the clusters, or are otherwise limited towards detecting differential expres-

sion of a gene along linearly ordered cells along one lineage path in the trajectory.

tradeSeq [7] is a generalised TDE method which can be used to discover different

types of differential expression along a trajectory, which can be applied as a down-

stream analysis to trajectories inferred from any TI method. By including a compar-

ative benchmark of TDE methods on real and synthetic data, Van den Berge et al.

started a rational dialogue on TDE methodology.

9.2.2 Trajectory alignment

Trajectory alignment allows studying the differences between multiple trajectories

that aremostly similar. For example, the cell developmental process of a patient could

be compared to that of a healthy control to detect the transcriptomic differences of

Page 213

Discussion.

9

a particular lineage branch.

Trajectory alignment has been used to compare gene expression kinetics resulting

from different biological processes [14], to compare human, chimpanzee and

macaque neuronal development [15], to find differences in gene regulation in

the presence of certain growth factors [16], and to compare human and mouse

embryogenesis [17].

However, aligning trajectories becomes exponentially more difficult as the complexity

of compared trajectories increases. For this reason, trajectory alignment remains a

mostly unexplored territory within single-cell omics.

Dynamic Time Warping (DTW) [18] is most commonly used to align linear trajectories.

DTW is a technique originating in the field of speech recognition and aligns temporal

sequences by creating a warping path between two sequences that indicates which

sequence must be dilated or contracted to best match the other one.

Over time, as the affordability of single-cell omics technologies improves and the

abundance of available datasets increases, we hypothesize that these methods will

become highly relevant in comparing dynamic processes in samples from multiple

donors.

9.2.3 Variations on network inference

Using a collection of transcriptomic profiles, network inference (NI) methods predict

which genes are the regulators of a target gene. The output of an NI method is called

a gene regulatory network in which each predicted interaction can be assigned a pre-

dicted strength or effect (activating or inhibitory). However, cells are very molecularly

heterogeneous, and only a fraction of all possible gene regulatory interactions is ac-

tive at any point in time. Unfortunately, ’bulk’ NI does not permit studying the diversity

of regulatory activity within and between cell populations, and will thus suffer from

similar drawbacks as bulk omics when compared to single-cell omics. Several adap-

tations of NI have been developed to address this problem, namely Differential NI,

Dynamic NI, Casewise NI and Intercellular NI.

Differential NI methods reconstruct one network per group of cells. The grouping

can either be defined by prior knowledge, for example from gene expression, cluster-

ing, or by sorting the cells a priori. The resulting networks can be investigate to de-

tect differentially active (groups of) interactions between conditions (e.g. deregulated

pathways between healthy and diseased), or (groups of) interactions that are highly

active in between conditions (e.g. for investigating common pathways between dif-

ferent conditions). Differential NI methodology had already been developed for bulk

Page 214

9

Discussion.

omics [19] to, for example, infer deregulated regulatory mechanisms in different sub-

types of leukaemia [20]. Recently, similar methodology has been discussed in the

context of single-cell omics as well [21].

Dynamic NI methods exploit cell ordering information to improve the resulting reg-

ulatory network. Prior ordering information can be obtained experimentally (e.g. by

performing lineage tracing or time-series experiments) or computationally (e.g. by

performing trajectory inference or RNA velocity experiments). Unfortunately, most

methods which are labelled as dynamic NI methods use time-series information to

augment the inference of a static network. Ideally, dynamic NImethodswould predict

how the activity of interactions change along (pseudo-)time, as doing so would allow

to detect regulatory cascades or interactions which act as the main drivers behind

crucial dynamic processes.

In casewise NI, one regulatory network is predicted for every case (sample, patient,

single cell) in the dataset. Such methodology allows generating hypotheses of dereg-

ulated interactions for individual patients, which could be used for drug re-purposing

and personalisedmedicine. Furthermore, most analyses that can be run on single-cell

omics (e.g. diffential expression) can also be applied on casewise regulatory networks

(e.g. to predict differentially expressed interactions). It is the most generalised form of

NI of the variants discussed above, as a casewise regulatory network can be clustered

to create a differential network, or trajectory inference can be applied to derive a dy-

namic regulatory network. Examples of casewise NI methods include SCENIC [22],

SSN [23], and LIONESS [24].

Instead of inferring gene regulatory mechanisms occurring within a cell, intercellular

NI methods [25, 26] study communication between cells by predicting interactions

between the ligands of one type of cells and the receptors of another group of cells.

Such methods typically require much more prior data (e.g. which cells are commu-

nicating with which cells, what are the ligands and receptors), but allows studying

how the cells react to their environment and investigate intercellular feedback mech-

anisms.

9.3 A life without Git, Travis CI, or tidyverse

A significant portion of this work involved developing large software libraries, in a

collaborative setting, over a time span of about four years. Since the results of our

comparison of 45 TI methods required three years to develop, we were happily forced

to develop a system where experiments could be rerun and results could be updated

on-the-fly.

Page 215

Discussion.

9

We summarised our experiences in the form of a set of guidelines for benchmarking

computational tools (Chapter 8). However, these guidelines do not touch uponmany

aspects of good software development practices that we learned to use in order to

bring this thesis to a good end. In particular, I would like to highlight several funda-

mental (open-source) projects without the likes of which our research would have

been simply impossible to perform, namely Git, Travis CI, and the tidyverse.

Git [27] is a code-revision system that allows multiple users to collaborate on devel-

oping code and keep track of what changes were made by whom. Since Wouter

Saelens and I were often working closely together on a specific part of our software,

Git saved us a lot of time by merging together changes developed in parallel. Only

in few cases did we need to intervene manually to merge our changes. Additionally,

Github.com allowed us not only to collaborate with each-other, but also correspond

and collaborate with other software developers from many different research groups,

using Github Issues to discuss problems with other researchers, and Github Pull Re-

quests to contribute code to open-source projects.

Together, we published over 20’000 code contributions (commits) across 50+ soft-

ware packages [28]. Since many of these packages depend on one another, it is in-

evitable that changes made to one package would break another package. We wrote

many, many unit tests (and still too few), and we let these tests automatically be exe-

cuted on Travis CI [29]. This way, when we pushed breaking changes to Github, Travis

CI would notify that our commit has resulted in one or more unit tests failing. While

sometimes it is a hassle to set up, Travis CI has prevented us countless times from

generating faulty results due to a faulty underlying function.

Software bugs can be introduced even by incredibly small, seemingly insignificant

changes. The R programming language seems particularly susceptible towards get-

ting trapped by its many pitfalls. However, there are many benefits of using R in bioin-

formatics research context, such as its extensive community of statisticians develop

packages for the R ecosystem. The tidyverse packages [30], developed by the RStu-

dio team andmany online contributors, completely transformedmy experiences with

R from tedious struggles to efficient everyday functional programming.

Honourable mentions are Linux, Fedora, LATEX, TeXstudio, (R)Markdown, Bash, Sed,

Regular expressions, Rocket Chat, for making bioinformatics software development

even more fun and enjoyable.

Page 216

9

Discussion.

9.4 References

[1] Atefeh Lafzi et al. “Tutorial: Guidelines for the Experimental Design of Single-

Cell RNA Sequencing Studies”. In: Nature Protocols 13.12 (Dec. 1, 2018),

pp. 2742–2757. issn: 1750-2799. doi: 10.1038/s41596-018-0073-y.

[2] Malte D Luecken and Fabian J Theis. “Current Best Practices in Single-Cell

RNA-Seq Analysis: A Tutorial”. In: Molecular Systems Biology 15.6 (June 1,

2019), e8746. issn: 1744-4292. doi: 10.15252/msb.20188746.

[3] Vladimir Kiselev et al. “Analysis of Single Cell RNA-Seq Data” (Cambridge, UK).

May 2, 2019. url: https://scrnaseq-course.cog.sanger.ac.uk/website/index.

html (visited on 08/22/2019).

[4] Liesbet Martens and Niels Vandamme. “Analysis of Single Cell RNA-Seq Data

from 10x Genomics” (Ghent). Aug. 29, 2019. url: https : / / training . vib . be /

analysis-single-cell-rna-seq-data-10x-genomics (visited on 08/22/2019).

[5] Martin Hemberg, director. Coffee Break during ”Analysis of Single Cell RNA-

Seq Data 23-24 May 2019” Workshop. In collab. with Vladimir Kiselev. May 23,

2019. url: https://www.youtube.com/watch?v=7dQ_pleDO2Y&t=1h53m14s.

[6] Wouter Saelens et al. “A Comparison of Single-Cell Trajectory Inference

Methods”. In: Nature Biotechnology 37 (May 2019). issn: 15461696. doi:

10.1038/s41587-019-0071-9.

[7] Koen Van den Berge et al. “Trajectory-Based Differential Expression Analysis

for Single-Cell Sequencing Data”. In: bioRxiv (Jan. 1, 2019), p. 623397. doi: 10.

1101/623397.

[8] Aditya Pratapa et al. “Benchmarking Algorithms for Gene Regulatory Network

Inference from Single-Cell Transcriptomic Data”. In: bioRxiv (June 4, 2019),

p. 642926. doi: 10.1101/642926.

[9] Human Cell Atlas consortium. Human Cell Atlas Data Portal. 2018. url: https:

//data.humancellatlas.org (visited on 08/11/2019).

[10] Robrecht Cannoodt et al. “SCORPIUS Improves Trajectory Inference and Iden-

tifies Novel Modules in Dendritic Cell Development”. In: (Oct. 2016). doi: 10.

1101/079509.

[11] Xiaojie Qiu et al. “Reversed Graph Embedding Resolves Complex Single-Cell

Trajectories”. In: Nature Methods 14.10 (Oct. 2017), pp. 979–982. issn: 1548-

7105. doi: 10.1038/nmeth.4402.

[12] Tapio Lönnberg et al. “Single-Cell RNA-Seq and Computational Analysis Using

Temporal Mixture Modeling Resolves TH1/TFH Fate Bifurcation in Malaria”. In:

Science Immunology 2.9 (Mar. 2017), eaal2192. issn: 2470-9468. doi: 10.1126/

sciimmunol.aal2192. pmid: 28345074.

Page 217

https://doi.org/10.1038/s41596-018-0073-y
https://doi.org/10.15252/msb.20188746
https://scrnaseq-course.cog.sanger.ac.uk/website/index.html
https://scrnaseq-course.cog.sanger.ac.uk/website/index.html
https://training.vib.be/analysis-single-cell-rna-seq-data-10x-genomics
https://training.vib.be/analysis-single-cell-rna-seq-data-10x-genomics
https://www.youtube.com/watch?v=7dQ_pleDO2Y&t=1h53m14s
https://doi.org/10.1038/s41587-019-0071-9
https://doi.org/10.1101/623397
https://doi.org/10.1101/623397
https://doi.org/10.1101/642926
https://data.humancellatlas.org
https://data.humancellatlas.org
https://doi.org/10.1101/079509
https://doi.org/10.1101/079509
https://doi.org/10.1038/nmeth.4402
https://doi.org/10.1126/sciimmunol.aal2192
https://doi.org/10.1126/sciimmunol.aal2192
28345074

Discussion.

9

[13] F. Alexander Wolf et al. “PAGA: Graph Abstraction Reconciles Clustering with

Trajectory Inference through a Topology Preserving Map of Single Cells”. In:

Genome Biology 20.1 (Mar. 19, 2019), p. 59. issn: 1474-760X. doi: 10 . 1186/

s13059-019-1663-x.

[14] Davide Cacchiarelli et al. “Aligning Single-Cell Developmental and Reprogram-

ming Trajectories Identifies Molecular Determinants of Myogenic Reprogram-

ming Outcome”. In: Cell Systems 7.3 (Sept. 26, 2018), 258–268.e3. issn: 2405-

4712. doi: 10.1016/j.cels.2018.07.006. pmid: 30195438.

[15] Sabina Kanton et al. “Organoid Single-Cell Genomic Atlas Uncovers Human-

Specific Features of Brain Development”. In: Nature 574.7778 (Oct. 2019),

pp. 418–422. issn: 1476-4687. doi: 10.1038/s41586-019-1654-9.

[16] José L. McFaline-Figueroa et al. “A Pooled Single-Cell Genetic Screen

Identifies Regulatory Checkpoints in the Continuum of the Epithelial-to-

Mesenchymal Transition”. In: Nature Genetics 51.9 (Sept. 2019), pp. 1389–

1398. issn: 1546-1718. doi: 10.1038/s41588-019-0489-5.

[17] Ayelet Alpert et al. “Alignment of Single-Cell Trajectories to Compare Cellular

Expression Dynamics”. In: Nature Methods 15.4 (Apr. 2018), pp. 267–270. issn:

1548-7105. doi: 10.1038/nmeth.4628.

[18] Toni Giorgino. “Computing and Visualizing Dynamic TimeWarping Alignments

in R: The Dtw Package”. In: Journal of Statistical Software 7 (Sept. 2009). doi:

10.18637/jss.v031.i07.

[19] Trey Ideker and Nevan J Krogan. “Differential Network Biology.”. In: Mol. Syst.

Biol. 8.565 (Jan. 2012), p. 565. issn: 1744-4292. doi: 10.1038/msb.2011 .99.

pmid: 22252388.

[20] Ryan Gill, Somnath Datta, and Susmita Datta. “Differential Network Analysis

in Human Cancer Research”. In: Current Pharmaceutical Design 20.1 (Jan. 1,

2014), pp. 4–10. url: https://www.ingentaconnect.com/content/ben/cpd/

2014/00000020/00000001/art00003.

[21] Yu-Chiao Chiu et al. “scdNet: AComputational Tool for Single-Cell Differential

Network Analysis”. In: BMC Systems Biology 12.8 (Dec. 21, 2018), p. 124. issn:

1752-0509. doi: 10.1186/s12918-018-0652-0.

[22] Sara Aibar et al. “SCENIC: Single-Cell Regulatory Network Inference

and Clustering”. In: Nature Methods (Oct. 2017). issn: 1548-7091. doi:

10.1038/nmeth.4463.

[23] Xiaoping Liu et al. “Personalized Characterization of Diseases Using Sample-

Specific Networks”. In: Nucleic Acids Research 44.22 (2016), e164–e164. issn:

0305-1048. doi: 10.1093/nar/gkw772. pmid: 27596597.

[24] Marieke Lydia Kuijjer et al. “Estimating Sample-Specific Regulatory Networks”.

In: iScience 14 (Mar. 28, 2019), pp. 226–240. issn: 2589-0042. doi: 10.1016/j.

isci.2019.03.021. pmid: 30981959.

Page 218

https://doi.org/10.1186/s13059-019-1663-x
https://doi.org/10.1186/s13059-019-1663-x
https://doi.org/10.1016/j.cels.2018.07.006
30195438
https://doi.org/10.1038/s41586-019-1654-9
https://doi.org/10.1038/s41588-019-0489-5
https://doi.org/10.1038/nmeth.4628
https://doi.org/10.18637/jss.v031.i07
https://doi.org/10.1038/msb.2011.99
22252388
https://www.ingentaconnect.com/content/ben/cpd/2014/00000020/00000001/art00003
https://www.ingentaconnect.com/content/ben/cpd/2014/00000020/00000001/art00003
https://doi.org/10.1186/s12918-018-0652-0
https://doi.org/10.1038/nmeth.4463
https://doi.org/10.1093/nar/gkw772
27596597
https://doi.org/10.1016/j.isci.2019.03.021
https://doi.org/10.1016/j.isci.2019.03.021
30981959

9

Discussion.

[25] Mirjana Efremova et al. “CellPhoneDB v2.0: Inferring Cell-Cell Communication

from Combined Expression of Multi-Subunit Receptor-Ligand Complexes”. In:

bioRxiv (June 24, 2019), p. 680926. doi: 10.1101/680926.

[26] Robin Browaeys, Wouter Saelens, and Yvan Saeys. “NicheNet: Modeling Inter-

cellular Communication by Linking Ligands to Target Genes”. In: Nature Meth-

ods (Dec. 9, 2019), pp. 1–4. issn: 1548-7105. doi: 10.1038/s41592-019-0667-

5.

[27] Linus Torvalds and Junio Hamano. Git: Fast Version Control System. 2005. url:

http://git-scm.com.

[28] Robrecht Cannoodt and Wouter Saelens, director. The Development of Dyn-

verse. Apr. 1, 2019. url: https://www.youtube.com/watch?v=C42F5Y8kCU0

(visited on 10/14/2019).

[29] GmbH Travis CI. Travis CI - Test and Deploy Your Code with Confidence. 2011.

url: https://travis-ci.org (visited on 10/14/2019).

[30] Hadley Wickham et al. “Welcome to the Tidyverse”. In: (Nov. 21, 2019). doi:

10.21105/joss.01686.

Page 219

https://doi.org/10.1101/680926
https://doi.org/10.1038/s41592-019-0667-5
https://doi.org/10.1038/s41592-019-0667-5
http://git-scm.com
https://www.youtube.com/watch?v=C42F5Y8kCU0
https://travis-ci.org
https://doi.org/10.21105/joss.01686

A | Curriculum Vitae

A.1 Personalia

Name Robrecht Cannoodt

Date of Birth January 25th, 1990

Place of birth Ghent

Nationality Belgian

Address Kerkstraat 75, 9070 Destelbergen

Email robrecht.cannoodt@gmail.com

Webpage https://www.cannoodt.dev

A.2 Professional Experience

Ph.D. student in Computer Science

Ghent University, Belgium, September 2013 – now

Laboratory assistant (summer job)

Bloedtransfusiecentrum Gent, Belgium, July (2009, 2010, 2011, 2012)

A.3 Education

Master of Science in Computer Science Engineering: Software Engineering

Ghent University, Belgium, 2011 – 2013

Bachelors degree in Informatics

Ghent University, Belgium, 2008 – 2011

Bachelors degree in Engineering: Architecture

Ghent University, Belgium, 2007 – 2008

International Baccalaureate

International School of Berne, Switzerland, 2002 – 2007

Page 221

mailto:robrecht.cannoodt@gmail.com
https://www.cannoodt.dev

Curriculum Vitae

A
A.4 First-author publications

• Cannoodt R, Saelens W, Sichien D, Tavernier S, Janssens S, Guilliams M, Lam-

brecht B, De Preter K, Saeys Y. SCORPIUS improves trajectory inference and

identifies novel modules in dendritic cell development. bioRxiv 079509. 2016

Oct.

• Cannoodt R *, SaelensW *, Saeys Y. Computational methods for trajectory infer-

ence from single-cell transcriptomics. European journal of immunology. 2016

Nov;46(11):2496-506.

• Cannoodt R, Ruyssinck J, Ramon J, De Preter K, Saeys Y. IncGraph: Incre-

mental graphlet counting for topology optimisation. PloS one. 2018 Apr

26;13(4):e0195997.

• Saelens W *, Cannoodt R *, Todorov H, Saeys Y. A comparison of single-cell

trajectory inference methods. Nature biotechnology. 2019 May;37(5):547.

*: Equal contribution.

A.5 Co-author publications

• Decock A, Ongenaert M, Cannoodt R, Verniers K, De Wilde B, Laureys G, Van

Roy N, Berbegall AP, Bienertova-Vasku J, Bown N, Clément N. Methyl-CpG-

binding domain sequencing reveals a prognostic methylation signature in neu-

roblastoma. Oncotarget. 2016 Jan 12;7(2):1960.

• Van Cauwenbergh C, Van Schil K, Cannoodt R, Bauwens M, Van Laethem T, De

Jaegere S, Steyaert W, Sante T, Menten B, Leroy BP, Coppieters F. arrEYE: a

customized platform for high-resolution copy number analysis of coding and

noncoding regions of known and candidate retinal dystrophy genes and retinal

noncoding RNAs. Genetics in Medicine. 2017 Apr;19(4):457.

• Claeys S, Denecker G, Cannoodt R, Kumps C, Durinck K, Speleman F, De Preter

K. Early and late effects of pharmacological ALK inhibition on the neuroblastoma

transcriptome. Oncotarget. 2017 Dec 5;8(63):106820.

• Depuydt P, Boeva V, Hocking TD, Cannoodt R, Ambros IM, Ambros PF, As-

gharzadeh S, Attiyeh EF, Combaret V, Defferrari R, Fischer M. Genomic am-

plifications and distal 6q loss: novel markers for poor survival in high-risk neu-

roblastoma patients. JNCI: Journal of the National Cancer Institute. 2018 Mar

5;110(10):1084-93.

Page 222

A

Curriculum Vitae

• Scott CL*, T’Jonck W*, Martens L, Todorov H, Sichien D, Soen B, Bonnardel J,

De Prijck S, Vandamme N, Cannoodt R, Saelens W, Vanneste B, Toussaint W,

De Bleser P, Takahashi N, Vandenabeele P, Henri S, Pridans C, Hume DA, Lam-

brecht BN, De Baetselier P, Milling SWF, Van Ginderachter JA, Malissen B, Berx

G, Beschin A, Saeys Y, Guilliams M. The transcription factor ZEB2 is required

to maintain the tissue-specific identities of macrophages. Immunity. 2018 Aug

21;49(2):312-25.

• Saelens W, Cannoodt R, Saeys Y. A comprehensive evaluation of module de-

tection methods for gene expression data. Nature communications. 2018 Mar

15;9(1):1090.

• Todorov H, Cannoodt R, Saelens W, Saeys Y. Network Inference from Single-

Cell Transcriptomic Data. In Gene Regulatory Networks 2019 (pp. 235-249).

Humana Press, New York, NY.

• Van den Berge K, De Bezieux HR, Street K, Saelens W, Cannoodt R, Saeys Y,

Dudoit S, Clement L. Trajectory-based differential expression analysis for single-

cell sequencing data. bioRxiv. 2019 Jan 1:623397.

• Weber LM, Saelens W, Cannoodt R, Soneson C, Hapfelmeier A, Gardner PP,

Boulesteix AL, Saeys Y, Robinson MD. Essential guidelines for computational

method benchmarking. Genome biology. 2019 Jun;20(1):125.

• Lorenzi L*, Hua-Sheng C*, Avila Cobos F, Gross S, Volders PJ, Cannoodt R,

Nuytens J, Vanderheyden K, Anckaert J, Lefever S, Goovaerts T, Hansen TB, Kuer-

sten S, Nijs N, Taghon T, Vermaelen K, Brache KR, Saeys Y, De Meyer T, Desh-

pande N, Anande G, Chen TW, Wilkins MR, Unnikrishnan A, De Preter K, Kjerns J,

Koster J, Schroth GP, Vandesompele J, Surnazin P, Mestdagh P. The RNA Atlas,

a single nucleotide resolution map of the human transcriptome. bioRxiv. 2019

Oct:807529. Submitted to Nature.

• Van den Berge K, Roux de Bézieux H, Street K, Saelens W, Cannoodt R, Saeys Y,

Dudoit S. Trajectory-based differential expression analysis. Submitted to Nature

Communications.

• Van de Sande B, Flerin C, Davie K, DeWaegeneer M, Hulselmans G, Aibar S, Seur-

inck R, Saelens W, Cannoodt R, Rouchon Q, Verbeiren T, De Maeyer D, Reumers

J, Saeys Y, Aerts S. A scalable SCENIC workflow for single-cell gene regulatory

network analysis. Submitted to Nature Protocols.

*: Equal contribution.

Page 223

Curriculum Vitae

A
A.6 Conferences and meetings

• Differential Network Medicine, Antwerp, Belgium, 4-6 December 2013.

• BeNeLux Bioinformatics Conference, Brussels, Belgium, 9-10 December 2013.

• OncoPoint, Ghent, Belgium, 6 February 2014.

• AISTATS, Reykjavik, Iceland, 22-25 April 2014.

• N2N Annual Symposium, Ghent, Belgium, 21 May 2014.

• Bioinformatics N2N Conference, Ghent, Belgium, 21 May 2014.

• BENELEARN, Brussels, Belgium, 6 June 2014.

• BeNeLux Bioinformatics Conference, Luxembourg, 8-9 December 2014.

• OncoPoint, Ghent, Belgium, 11 February 2015.

• Big Data to Bedside, Ghent, Belgium, 1-2 April 2015.

• BIG N2N symposium, Ghent, Belgium, 21 May 2015.

• BeNeLux Bioinformatics Conference, Antwerp, Belgium, 7-8 December 2015

• Single Cell Biology Workshop, Ghent, Belgium, 15 January 2016.

• Single Cell Biology, Hinxton, United Kingdom, 8-10 March 2016.

• BIG N2N symposium, Ghent, Belgium, 19 May 2016.

• CYTO, Seattle, USA, 11-15 June 2016.

• BENELEARN, Kortrijk, Belgium, 12-13 September 2016.

• Single Cell Genomics, Hinxton, United Kingdom, 14-16 September 2016.

• Single Cell Biology Workshop, Ghent, Belgium, 15 January 2016.

• VIB Seminar, Veldhoven, Netherlands, 27-28 April 2017.

• Keystone Symposia: Single Cell Omics, Stockholm, Sweden, 26-30 May 2017.

• BeNeLux Bioinformatics Conference, Louvain, Belgium, 13-14 December 2017.

• Single Cell Biology, Hinxton, United Kingdom, 8-10 March 2018.

• Keystone Symposia: Single Cell Biology, Colorado, USA, 13-17 January 2019.

• Human Cell Atlas, Toronto, Canada, 29-31 July 2019.

Page 224

A

Curriculum Vitae

A.7 Courses / workshops

• Differential Network Medicine, Antwerp, Belgium, 4-6 September 2013.

• Basics of Biology for Engineers, Louvain, Belgium, 18-20 September 2013.

• Metric Learning, Louvain, Belgium, 15 October 2013.

• Machine learning Summer School, Reykjavik, Iceland, 25 April - 4 May 2014.

• Effective Oral Presentations by Jean-Luc Doumont, Ghent, Belgium, 3 Febru-

ary 2015.

• RNA-Seq analysis for differential expression, Ghent, Belgium, 24-27 April 2015.

• BigData@UGent in practice, Ghent, Belgium, 4 May 2015.

A.8 Oral presentations

• Cannoodt R., Ruyssinck J., De Preter K., Dhaene T., Saeys Y. : Network infer-

ence by integrating biclustering and feature selection. BeNeLux Bioinformatics

Conference, Brussels, Belgium, 9-10 December 2013.

• Cannoodt R., Ruyssinck J., De Preter K., Dhaene T., Saeys Y. : Network inference

by integrating biclustering and feature selection. IRC bioinformatics day, Ghent,

Belgium, 23 November 2013.

• Cannoodt R., De Preter K., Saeys Y. : Differential network inference for pediatric

cancers. Maestra meeting, Ghent, Belgium, 14 March 2014.

• Cannoodt R., Beckers A., Van Cauwenbergh C., Speleman F., Saeys Y., De Preter

K. : Differential module analysis in neuroblastoma regulatory networks. Onco-

point, Ghent, Belgium, 11 February 2015.

• Cannoodt R., Saelens W., De Preter K., Saeys Y.: Inferring developmental

chronologies from single cell RNA, BeNeLux Bioinformatics Conference,

Antwerp, Belgium, 7-8 December 2015.

• Cannoodt R., Saelens W., De Preter K., Saeys Y.: Inferring trajectories along dy-

namic processes from single-cell RNA-seq data. Jean-LucDoumontworkshop,

Ghent, Belgium, 17 December 2015.

• Cannoodt R., Saelens W., De Preter K., Saeys Y. : SCORPIUS: Inferring trajecto-

ries along dynamic processes from single-cell RNA-seq data. Single Cell Biol-

ogy Workshop, Ghent, Belgium, 15 January 2016.

Page 225

Curriculum Vitae

A

• Cannoodt R., Saelens W., De Preter K., Saeys Y. : Improving marker gene discov-

ery from high-dimensional single-cell snapshot data. CYTO, Seattle, USA, 11-15

June 2016.

• Cannoodt R., SaelensW., De Preter K., Saeys Y. : Unbiasedmodelling of dynamic

processes with single-cell RNA-sequencing. BENELEARN, Kortrijk, Belgium, 12-

13 September 2016.

• Cannoodt R., Saelens W., Sichien D., Tavernier S., Janssens S., Guilliams M., Lam-

brecht B., De Preter K., Saeys Y. : Unbiasedmodelling of dynamic processes with

SCORPIUS identifies novel modules in dendritic cell development. VIB Seminar,

Veldhoven, Netherlands, 27-28 april 2017.

• Cannoodt R., Saelens W. : Automated building and unit testing, Docker and

Singularity. VIB Developers Meeting, Ghent, Belgium, 25 January 2019.

• Cannoodt R., Saelens W., Todorov H., Saeys Y. : dynbenchmark, Assessing Ac-

curacy, Robustness and Usability of Single-Cell Trajectory Inference methods.

Keystone Symposia: Single Cell Biology, Colorado, USA, 13-17 January 2019.

A.9 Poster presentations

• Cannoodt R., Ruyssinck J., De Preter K., Dhaene T., Saeys Y.: Network Infer-

ence by Integrating Biclustering and Feature Selection. N2N Annual Sympo-

sium, Ghent, Belgium, 21 May 2014.

• Cannoodt R., Van Cauwenbergh C., Beckers A., Speleman F., De Preter K.,

Saeys Y.: Differential Module Analysis in Neuroblastoma Regulatory Net-

works. BeNeLux Bioinformatics Conference 2014, Luxembourg, Belgium, 8-9

December 2014.

• Cannoodt R., Beckers A., Van Cauwenbergh C., Speleman F., De Preter K., Saeys

Y.: Differential Module Analysis in Neuroblastoma Regulatory Networks, BIG

N2N symposium, Ghent, Belgium, 21 May 2015.

• Cannoodt R., SaelensW., De Preter K., Saeys Y. : Unbiasedmodelling of dynamic

processeswith single-cell RNA-sequencing. Single Cell Biology, Hinxton, United

Kingdom, 8-10 March 2016.

• Cannoodt R., SaelensW., De Preter K., Saeys Y. : Unbiasedmodelling of dynamic

processes with single-cell RNA-sequencing. BIG N2N symposium, Ghent, Bel-

gium, 19 May 2016.

Page 226

A

Curriculum Vitae

• Cannoodt R., Saelens W., De Preter K., Saeys Y. : Improving marker gene discov-

ery from high-dimensional single-cell snapshot data. CYTO, Seattle, USA, 11-15

June 2016.

• Cannoodt R., Saelens W., De Preter K., Saeys Y. : Unbiased modelling of dy-

namic processes with single-cell RNA-sequencing. BENELEARN 2016, Kortrijk,

Belgium, 12-13 September 2016.

• Cannoodt R., Saelens W., De Preter K., Saeys Y. : Unbiased modelling of dy-

namic processes with single-cell RNA-sequencing. Single Cell Genomics, Hinx-

ton, United Kingdom, 14-16 September 2016.

• Cannoodt R., Saelens W., Sichien D., Tavernier S., Janssens S., Guilliams M., Lam-

brecht B., De Preter K., Saeys Y.: Unbiased modelling of dynamic processes with

SCORPIUS identifies novel modules in dendritic cell development. VIB Seminar,

Veldhoven, Netherlands, 27-28 April 2017.

• Cannoodt R., Saelens W., De Preter K., Saeys Y.: True single cell network infer-

ence: Modelling gene regulation of individual cells. Keystone Symposia: Single

Cell Omics, Stockholm, Sweden, 26-30 May 2017.

• Cannoodt R., Saelens W., Todorov H., Saeys Y.: Generalised framework for and

comparison of 24 trajectory inference methods. BeNeLux Bioinformatics Con-

ference, Louvain, Belgium, 13-14 December 2017.

• Cannoodt R., Saelens W., Todorov H., Saeys Y. : A comparison of single-cell

trajectory inference methods: towards more accurate and robust tools. Single

Cell Biology, Hinxton, United Kingdom, 8-10 March 2018.

• Cannoodt R., Saelens W. : dynbenchmark, Assessing Accuracy, Robustness and

Usability of Single-Cell Trajectory Inference methods. Keystone Symposia: Sin-

gle Cell Biology, Colorado, USA, 13-17 January 2019.

A.10 Master student supervision

• Leen De Baets. Identificatie van nieuwe kankergenen voor neuroblastoomon-

derzoek met machine learning. September 2013 – June 2014.

• Wouter Saelens. Locale cel-type specifieke genexpressie in het myeloïde tran-

scriptoom. September 2013 – June 2014.

• Charlotte De Vogelaere. Quantitative evaluation of network inference methods

for single-cell cancer regulomes. September 2015 – June 2016.

Page 227

Curriculum Vitae

A

• Sofie Veys. Comparative review of dimensionality reduction methods for high-

throughput single-cell transcriptomics. September 2016 – June 2017.

• Chloë Guidi. Het afleiden van dynamische grafen op basis van snapshot data.

September 2016 – June 2017.

• Jarre Knockaert. Inferentie van cellontwikkelingstrajecten met machine learn-

ing. September 2018 – June 2019.

A.11 Open-source software

As part of this work, many open-source software packages were created and many

others were contributed to (Table A.1).

Packages that were created as part of this work are hosted on Github under the user-

name rcannood1 or the dynverse organisation2. As part of our standard development

practices, we automate execution of unit tests and write extensive documentation to

ensure the code complies with CRAN policy before submission. Many of the packages

are already hosted on CRAN, or are in the process of being prepared for submission.

We also helped maintain or extend other packages on Github, CRAN or Bioconductor

on which our software depends. This includes speeding up parts of the dependency

(slingshot), implementing new functionality (devtools, ParamHelpers, ranger, rlang),

fixing bugs (proxyC, rlang, monocle, splatter, slingshot), becoming a maintainer of

orphaned packages (diffusionMap, princurve, GillespieSSA), and extending the doc-

umentation (devtools, mlr, remotes, tidyverse). Several of these packages are main-

stream R packages which receive millions of downloads per year (devtools, ranger,

remotes, rlang, tidyverse).

A.12 Sources of funding

Robrecht Cannoodt was supported by the Fonds Wetenschappelijk Onderzoek

(11Y6218N).

1https://github.com/rcannood?tab=repositories
2https://github.com/dynverse?tab=repositories

Page 228

https://github.com/rcannood?tab=repositories
https://github.com/dynverse?tab=repositories

A

Curriculum Vitae

Table A.1: Contibutions to open-source software. Following abbreviations denote the relation
with respect to the package: aut Author, ctb Contributor. Yearly download statistics are based
on the number of downloads between 2019-10-01 and 2019-11-28. CRAN download statistics
are retrieved from the Rstudio CRAN mirror only; other CRAN mirrors do not track download
statistics. In addition, many of the dynverse packages have only recently been published on
CRAN. For Github repositories, no download statistics could be retrieved.

Name Role Host Downloads
per year

Description

babelwhale aut CRAN 6110 Interacting with Docker and Singularity containers
diffusionMap aut CRAN 30’123 Implements diffusionmapmethod of data parameterization
dynbenchmark aut Github Pipeline for benchmarking trajectory inference methods
dyndimred aut CRAN 5116 Applying dimensionality reduction methods
dyneval aut Github Evaluating trajectory inference methods
dynfeature aut Github Calculating feature importance scores from trajectories
dyngen aut Github Simulating single-cell data using gene regulatory networks
dynguidelines aut Github User guidelines for trajectory inference
dynmethods aut Github A collection of wrappers for trajectory inference methods
dyno aut Github A pipeline for inferring, visualising and interpreting trajecto-

ries
dynparam aut CRAN 3816 Creating meta-information for parameters
dynplot aut Github A simple visualisation library for trajectories
dynplot2 aut Github A fully customisable visualisation library for trajectories
dyntoy aut Github Generating simple toy data of cellular differentiation
dynutils aut CRAN 16’999 Common functionality for the dynverse packages
dynwrap aut CRAN 4009 A common format for trajectories
GillespieSSA aut CRAN 7763 Gillespie’s Stochastic Simulation Algorithm (SSA)
GillespieSSA2 aut CRAN 4181 Gillespie’s Stochastic Simulation Algorithm for Impatient

People
gng aut Github Growing Neural Gas implemented in Rcpp
incgraph aut CRAN 3570 Incremental graphlet counting for network optimisation
lmds aut CRAN 1742 Landmark Multi-Dimensional Scaling
princurve aut CRAN 28’869 Fits a principal curve in arbitrary dimension
proxyC aut CRAN 122’858 Computes proximity in large sparse matrices
qsub aut CRAN 3622 Running commands remotely on gridengine clusters
SCORPIUS aut CRAN 4285 Inferring developmental chronologies from single-cell RNA

sequencing data

badger ctb CRAN 6472 Query information and generate badge for using in README
devtools ctb CRAN 5’918’700 Tools to make developing R packages easier
ggrepel ctb CRAN 2’018’030 Repel overlapping text labels away from each other
merlot ctb Github Reconstructing lineage-tree topologies from scRNA-seq

data
mlr ctb CRAN 176’330 Machine Learning in R
monocle ctb Bioc 34’360 Clustering, differential expression, and trajectory analysis for

single-cell RNA-Seq
ParamHelpers ctb CRAN 150’775 Helpers for Parameters in Black-Box Optimization, Tuning

and Machine Learning
pseudogp ctb Github Probabilistic pseudotime for single-cell RNA-seq
ranger ctb CRAN 413’641 A Fast Implementation of Random Forests
Rdimtools ctb CRAN 7367 Dimension Reduction and Estimation Methods
remotes ctb CRAN 3’944’090 R package installation from remote repositories
rlang ctb CRAN 13’269’115 Functions for base types and core R and tidyverse features
SCope ctb Github Visualization of high dimensional single cell data
shadowtext ctb CRAN 6822 shadow text for grid and ggplot2
slingshot ctb Bioc 12’085 Tools for ordering single-cell sequencing
splatter ctb Bioc 5015 Simple simulation of single-cell RNA sequencing data
tidyverse ctb CRAN 5’079’398 Easily install and load packages from the tidyverse
URD ctb Github Reconstructing branching trajectories from single-cell

RNAseq data
wishbone ctb Github Identify bifurcating developmental trajectories from single-

cell data

Page 229

https://cran.r-project.org/package=babelwhale
https://cran.r-project.org/package=diffusionMap
https://github.com/dynverse/dynbenchmark
https://cran.r-project.org/package=dyndimred
https://github.com/dynverse/dyneval
https://github.com/dynverse/dynfeature
https://github.com/dynverse/dyngen
https://github.com/dynverse/dynguidelines
https://github.com/dynverse/dynmethods
https://github.com/dynverse/dyno
https://cran.r-project.org/package=dynparam
https://github.com/dynverse/dynplot
https://github.com/dynverse/dynplot2
https://github.com/dynverse/dyntoy
https://cran.r-project.org/package=dynutils
https://cran.r-project.org/package=dynwrap
https://cran.r-project.org/package=GillespieSSA
https://cran.r-project.org/package=GillespieSSA2
https://github.com/dynverse/gng
https://cran.r-project.org/package=incgraph
https://cran.r-project.org/package=lmds
https://cran.r-project.org/package=princurve
https://cran.r-project.org/package=proxyC
https://cran.r-project.org/package=qsub
https://cran.r-project.org/package=SCORPIUS
https://cran.r-project.org/package=badger
https://cran.r-project.org/package=devtools
https://cran.r-project.org/package=ggrepel
https://github.com/soedinglab/merlot
https://cran.r-project.org/package=mlr
https://bioconductor.org/packages/monocle
https://cran.r-project.org/package=ParamHelpers
https://github.com/kieranrcampbell/pseudogp
https://cran.r-project.org/package=ranger
https://cran.r-project.org/package=Rdimtools
https://cran.r-project.org/package=remotes
https://cran.r-project.org/package=rlang
https://github.com/aertslab/SCope
https://cran.r-project.org/package=shadowtext
https://bioconductor.org/packages/slingshot
https://bioconductor.org/packages/splatter
https://cran.r-project.org/package=tidyverse
https://github.com/farrelja/URD
https://github.com/ManuSetty/wishbone

Acknowledgements

This dissertation would never have seen the light of day were it not for the continued

support of many friends, family, and colleagues. While writing the dissertation, Caro

told me that the right place to thank everybody was at the end of the book. It was

not specified which end of the book I should be using for this. This isn’t the Acknowl-

edgement section you’re looking for.

Page 231

	Introduction
	The cell
	The origin of life and the RNA world
	Central dogma
	Cell types
	Cell dynamics and gene regulation
	Profiling single cells

	Computational tools
	Dimensionality reduction
	Clustering
	Trajectory inference
	Differential expression
	Network inference

	Benchmarking computational tools
	Problem definition
	Datasets
	Metrics

	Research context and objectives
	Hippocratic oath for method developers
	References

	dyngen: Benchmarking with in silico single cells
	Introduction
	Results
	RNA velocity
	Casewise network inference

	Discussion
	Methods
	Defining the backbone: modules and states
	Generating the gene regulatory network
	Convert gene regulatory network to a set of reactions
	Compute average expression along backbone transitions
	Simulate single cells
	Simulate experiment
	Determining the casewise ground-truth regulatory network
	Comparison of casewise network inference methods
	Comparison of RNA velocity methods
	Code availability

	References

	dynbenchmark: A comparison of single-cell trajectory inference methods
	Introduction
	Results
	Trajectory inference methods
	Accuracy
	Scalability
	Stability
	Usability

	Discussion
	Methods
	Trajectory inference methods
	Method wrappers
	Trajectory types
	Real datasets
	Synthetic datasets
	Dataset filtering and normalization
	Benchmark metrics
	Method execution
	Complementarity
	Scalability
	Stability
	Usability
	Guidelines
	Reporting Summary

	Supplementary Figures and Tables
	Supplementary Note 1: Metrics to compare two trajectories
	Metric characterisation and testing
	Metric conformity
	Score aggregation

	References

	SCORPIUS: Fast, accurate, and robust single-cell pseudotime
	Introduction
	Results
	SCORPIUS outperforms existing TI tools in inferring linear trajectories
	Functional modules in dendritic cell development

	Discussion
	Methods
	Sparse Spearman Rank Correlation
	Landmark Multi-Dimensional Scaling
	Approximated Principal Curves
	Gene Importances
	Datasets and benchmark results
	Measurement of protein synthesis
	Code availability

	References

	dyno: A toolkit for inferring and interpreting trajectories
	Introduction
	Results
	Preparing the dataset
	Selecting the best methods for a dataset
	Inferring trajectories
	Execution details
	Visualising trajectories
	Manipulating the trajectory
	Differentially expressed genes along the trajectory

	Discussion
	References

	bred: Inferring single cell regulatory networks
	Introduction
	Results
	Discussion
	Methods
	Inferring case-wise regulomes
	Predicting the effect of an interaction
	Clustering of case-wise GRNs
	Visualising clustered GRNs

	Supplementary information
	Melanocytic neoplasm
	Kidney carcinoma

	References

	incgraph: Optimising regulatory networks
	Introduction
	Materials and methods
	Incremental graphlet counting
	Timing experiments
	Gene regulatory network optimisation experiments

	Results and discussion
	Execution time is reduced by orders of magnitude
	IncGraph allows for better regulatory network optimisation

	Conclusion
	Supplemental information
	References

	Essential guidelines for computational method benchmarking
	Introduction
	Ten essential guidelines
	Defining the purpose and scope
	Selection of methods
	Selection (or design) of datasets
	Parameters and software versions
	Evaluation criteria: key quantitative performance metrics
	Evaluation criteria: secondary measures
	Interpretation, guidelines, and recommendations
	Publication and reporting of results
	Enabling future extensions
	Reproducible research best practices

	Discussion
	References

	Discussion
	Impact of this work
	Outlook
	Trajectory differential expression
	Trajectory alignment
	Variations on network inference

	A life without Git, Travis CI, or tidyverse
	References

	Curriculum Vitae
	Personalia
	Professional Experience
	Education
	First-author publications
	Co-author publications
	Conferences and meetings
	Courses / workshops
	Oral presentations
	Poster presentations
	Master student supervision
	Open-source software
	Sources of funding

